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Densities

e Non magnetic system: total density n(r)

e Magnetic system with collinear spin:

n(r) = ny(r) +n(r) m(r) = ny(r) —ny(r)

e Magnetic noncollinear spin:

n(r) 1M (r), my (r), m;(r)
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PW cutoff for densities

e The cutoff lengt for densities is by construction 2 the one for wavefunctions. It
means cutoff energy is 4 times.

Ty (I‘) — Zn,k ¢:},,k ¢n,k

e In case of USPP or PAW we have also augmentation charges and ecutrho is
tipically about 6 - 10 times larger than ecut.

Ny(r) =Dk PhacPrk  + 2.5 pijQij(r) Pij = Doni (Pni|Bi) (Bildni)
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Non magnetic (nspin=1)

e The SCF loop starts from a non magnetic configuration
e Each Kohn-Sham state has an occupation from 0 to 2

n(r) = 2% Zn,k fn,k ¢;,k Pk

e Non magnetic systems may be also studied with the noncollinear formalism (
spinors). In this case each KS spinor state is doubly degenerate.
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Collinear magnetic ( nspin = 2)

e distinct KS states are used 2 different polarizations( spin up, spin down)
e The magnetization is a scalar

’n/('r)T — Zn,k fnak’T ¢’>]k’l,,k,T qsn’k?T n(r)\l/ — En,k fn,k,\l/ qb;l;,k’\l, qsn,k,\l/

e One needs to specify a starting magnetization or fix a total magnetization for

the system.
o Starting magnetization: the scf is free to converge to any magnetization
o Total magnetization, occupations for majority and minority spin are computed separately in
order to keep to specified total magnetization during the scf loop
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Non collinear magnetism

e Magnetization is a vector.

m(r) = Zn,k fn,k¢;,k3¢n,k

e ltis also possible to introduce the spin-orbit coupling. One has to use fully
relativistic pseudo-potentials.
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Metals vs insulators

e Insulators: there is a finite gap between
occupied and emply levels it is possile to
determine a number for occupied levels fixed
for all k-points.

e Metals: there is no gap between occupied and
empty levels, to make feasible the k-point
summation is necessary use the smearing
technique;

e The smearing at the Fermi level increases the
total energy, this increase should be kept
small.
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Occupations for magnetic systems

e One has to smearing when the scf loop is free to search for the ground state
magnetization

e Itis possible to use fixed occupations if total _magnetization is specified with
an integer value.

e for atoms it is possible to specify occupations in input directly
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Potentials

e V ... Theelectrostatic potential generated by the electronic density. Long
range

e V. . The exchange correlation potential, short range.

e V, . Thelong range part of the ion-electron interaction.
E_,..q the electrostatic energy of the ion-ion interaction.
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Electrostatics in PBC

e The net charge per unit cell must be 0 otherwise the energy would diverge.

e All potentials must be periodic, the net value of the electric field must be
vanishing

e There is no direct reference the the vacuum level.

e The electrostatic moments per unit cell are generally ill defined.
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Picture from: Electronic Structure: Basic Theory and Practical Methods
R.M. Martin
***** 3 Cambridge University Press (2008)
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Picture from: G. Makov, M.C. Payne PRB 51, 4014 (1995)
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Electrostatics in PBC: Hartree potential

e The Hartree potential is computed as:

&) iGr
vy (r) = 4me’ 2G40 TaE GP e

e ltislike we add a constant background 71 such that

n'(G=0)= [, (n(r)+n,)d’r=0
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lonic electrostatic energy: ( Ewald sum)

The ionic electrostatic energy is computed as the
energy of point positive changes immersed in a

uniform negative compensating background
(Ewald sum )

If the system is neutral the two compensating
backgrounds cancel each other

If the system is charged it will be like we had added
a non vanishing compensating background.

+ + + +
+ + + +
+ + + +
+ + + +

Picture from: Electronic Structure: Basic Theory and Practical Methods
R.M. Martin
Cambridge University Press (2008)
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lon-electron interaction

e The ion electron interaction is given by the pseudopotential

Vpseudo = Vioe(r) + 2>_ |Bi) Dij (Bi

e The non local part vanishes beyond the cutoff radii of the pseudopotential.
e The local part contains the long range coulombian part of the lon electron
interaction
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Potentials Si:
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Simulating systems with reduced periodicity.

e Molecules and clusters. Finite systems with vanishing systems with the
periodic images

e 1D systems: Periodicity along 1 direction: nanotube, nanorods etc/

e 2D systems: Periodicity along 2 dimensions with a vacuum layer between
slabs.

e Mixed systems: structures embedded in a periodic system, point defects,
interfaces, molecules on surfaces.
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Makov Payne corrections

e Neutral system
o No dipole the energy c or cubic lattice onvergese as O(L_5)
o dipole in non cubic system (’)(L_?’)

e Charged system

2o 27 _
© E=E -4 - 22 4+ 0(L)
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Polar surfaces

« In Polar 2D systems we can
eliminate the artificial electric
field with a sawtooth

potential.
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Water molecule
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That's all !l
Thanks for you attention




