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Born-Oppenheimer approximation

Time-dependent Schrödinger equation for electrons and nuclei:
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Notation: r ≡ (r1, . . . , rn) (electrons); R ≡ (R1, . . . ,RN) (nuclei).

Born-Oppenheimer approximation (M >> m): solve the electronic problem(
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)
ΨR(r) = E(R)ΨR(r)

for given R. One obtains E(R), the total energy or potential energy surface (PES).
E(R) determines the nuclear motion, its local minima correspond to meta-stable
states, its global minimum to the ground state of the system.



1. Solving the electronic problem: Hohenberg-Kohn theorem

Let us introduce the ground-state charge density n(r). For N electrons:

n(r) = N

∫
|Ψ(r, r2, ...rN)|2dr2...drN .

The Hohenberg-Kohn theorem (1964) can be demonstrated: there is a unique potential
V (r,R) having n(r) as ground-state charge density. Consequences:

• The electronic part of the energy can be written as a functional of n(r):

E[n(r)] = F [n(r)] +

∫
n(r)V (r)dr

where F [n(r)] is a universal functional of the density, V (r) is the external (nuclear)
potential acting on each electron:

V (r) = −
∑
µ

Zµe
2

|r−Rµ|
.

• E[n(r)] is minimized by the ground-state charge density n(r).



Density-Functional Theory: Kohn-Sham approach

Let us introduce the orbitals ψi for an auxiliary set of non-interacting electrons whose
charge density is the same as that of the true system:

n(r) =
∑
i

|ψi(r)|2, 〈ψi|ψj〉 = δij

Let us rewrite the energy functional in a more manageable way as:

E = Ts[n(r)] + EH[n(r)] + Exc[n(r)] +

∫
n(r)V (r)dr

where Ts[n(r)] is the kinetic energy of the non-interacting electrons:

Ts[n(r)] = − h̄
2

2m

∑
i

∫
ψ∗i (r)∇2ψi(r)dr,

EH[n(r)] is the Hartree energy, due to electrostatic interactions:

EH[n(r)] =
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′,



Exc[n(r)] is called exchange-correlation energy (a reminiscence from the Hartree-Fock
theory) and includes all the remaining (unknown!) energy terms.

Minimization of the energy with respect to ψi yields the Kohn-Sham (KS) equations:(
− h̄
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2m
∇2 + V (r) + VH(r) + Vxc(r)

)
︸ ︷︷ ︸

HKS

ψi(r) = εiψi(r),

where the Hartree and exchange-correlation potentials:

VH(r) =
δEH[n(r)]

δn(r)
= e2

∫
n(r′)

|r− r′|
dr′, Vxc(r) =

δExc[n(r)]

δn(r)

depend self-consistently upon the ψi via the charge density.

The energy can be rewritten in an alternative form using the KS eigenvalues εi:

E =
∑
i

εi − EH[n(r)]−
∫
n(r)Vxc(r)dr + Exc[n(r)]



Exchange-correlation functionals: simple approximations

What is Exc[n(r)]? Viable approximations are needed to turn DFT into a useful tool.

• Local Density Approximation (LDA): First, ”historical” approach (1965). Replace
the energy functional with a function of the local density n(r):

Exc =

∫
n(r)εxc(n(r))dr, Vxc(r) = εxc(n(r)) + n(r)

dεxc(n)

dn

∣∣∣∣
n=n(r)

where εxc(n) is calculated for the homogeneous electron gas of density n (using
Quantum Monte Carlo techniques) and fitted to some analytic form

• Generalized Gradient Approximation (GGA). The next step: a class of functionals
depending upon the local density and the local gradient |∇n(r)| of the density:

Exc =

∫
n(r)εGGA (n(r), |∇n(r)|) dr

There are many flavors of GGA, yielding similar (but slightly different) results.
These are by now the ”basic” functionals in most present-day calculations, with
excellent price-to-performance ratio, but some noticeable shortcomings.



Spin-polarized extension: LSDA

Simplest case: assume a unique quantization axis for spin. Energy functional:

E ≡ E[n+(r), n−(r)] = Ts +

∫
n(r)V (r)dr + EH + Exc[n+(r), n−(r)]

nσ(r) = charge density with spin polarization σ
n(r) = n+(r) + n−(r) total charge density.

Minimization of the above functional yields the Kohn-Sham equations:[
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dr′ + V σxc(r)

]
ψσi (r) = εσi ψ

σ
i (r)

Exchange-correlation potential and charge density:

V σxc(r) =
δExc
δnσ(r)

, nσ(r) =
∑
i

fσi |ψσi (r)|2

Note the extension to fractional occupancies (i.e. metallic systems): 0 ≤ fσi ≤ 1.
Noncolinear magnetism (no fixed axis for magnetization) can also be described.



“Basic” DFT: advantages and shortcomings

+ Computationally convenient: calculations in relatively complex condensed-matter
systems become affordable (GGA marginally more expensive than LDA)

+ Excellent results in terms of prediction of atomic structures, bond lengths, lattice
parameters (within 1 ÷ 2%), binding and cohesive energies (5 to 10% GGA; LDA
much worse, strongly overestimates), vibrational properties. Especially good for
sp−bonded materials, may work well also in more ”difficult” materials, such as
transition metal compounds

– The infamous band gap problem: εc−εv (or HOMO-LUMO in quantum chemistry
parlance) wildly underestimates the true band gap, ∆ = I − A, where I =
E(N)− E(N − 1), ionization potential, A = E(N + 1)− E(N), electron affinity

– Serious trouble in dealing with strongly correlated materials, such as e.g.
magnetic materials (trouble mostly arising from spurious self-interaction)

– No van der Waals interactions in any functional based on the local density and
gradients: van der Waals is nonlocal, cannot depend upon charge overlap



2. Towards electronic ground state (fixed nuclei)

Possible methods to find the DFT ground state:

1. By the self-consistent solution of the Kohn-Sham equations

HKSψi ≡ (T + V + VH[n] + Vxc[n])ψi = εiψi

where

– n(r) =
∑
i

fi|ψi(r)|2 is the charge density, fi are occupation numbers

– V is the nuclear (pseudo-)potential acting on electrons (may be nonlocal)

– VH[n] is the Hartree potential, VH(r) = e2
∫

n(r′)

|r− r′|
dr′

– Vxc[n] is the exchange-correlation potential. For the simplest case, LDA, Vxc[n]
is a function of the charge density at point r: Vxc(r) ≡ µxc(n(r))

Orthonormality constraints 〈ψi|ψj〉 = δij automatically hold.



2. By constrained global minimization of the energy functional

E[ψ] =
∑
i

fi〈ψi|T + V |ψi〉+ EH[n] + Exc[n]

under orthonormality constraints 〈ψi|ψj〉 = δij, i.e. minimize:

Ẽ[ψ,Λ] = E[ψ]−
∑
ij

Λij (〈ψi|ψj〉 − δij)

where

– V , n(r) are defined as before, ψ ≡ all occupied Kohn-Sham orbitals
– Λij are Lagrange multipliers, Λ ≡ all of them

– EH[n] is the Hartree energy, EH =
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′

– Exc[n] is the exchange-correlation energy. For the simplest case, LDA,

Exc =

∫
n(r)εxc(n(r))dr where εxc is a function of n(r).



Towards electronic ground state II

In a self-consistent approach, we need to find the self-
consistent charge density (or potential), performing
the following operations:

• Calculate the potential from the charge density

• Solve (diagonalize) the Kohn-Sham equations at
fixed potential

• Calculate the charge density from Kohn-Sham
orbitals

In a global-minimization approach, the operations are
basically the same, since one needs the gradients of
the energy functional, that is, HKSψ products:

δẼ[ψ,Λ]

δψ∗j
= HKSψj −

∑
i

Λjiψi



Towards electronic ground state III

Let us start from some guess of the input charge density nin(r):

nin −→ (VH + Vxc)[n
in] −→ ψi(r) −→ nout(r) =

∑
i

fi|ψi(r)|2

Such procedure defines the output charge density as a functional of the input one:
nout ≡ F [nin]. Assuming we have a black box producing F [n], we have to reach
self-consistency, that is, find ngs such that ngs = F [ngs]

Simply re-inserting nout as nin is not guaranteed to converge (it seldom does!). Reason:
there is no guarantee that such procedure leads to a reduction of all component of
the error (in particular, in typical condensed-matter systems low-frequency, small-G
components of the error are not reduced). One can use a simple mixing algorithm:

nnew = αnout + (1− α)nin, 0 < α < 1

guaranteed to converge if α is small enough.

Practical, more sophisticated algorithms (Anderson, Broyden, DIIS) use the input and
output of several preceding steps to determine the next optimal input combination.



Calculation of the total energy

Once self-consistency (or the minimum) is reached, the total energy of the system
can be calculated:

E =
∑
i

fi〈ψi|T + V |ψi〉+ EH[n] + Exc[n] + Eion−ion

where Eion−ion is the repulsive contribution from nuclei to the energy:

Eion−ion =
e2

2
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Equivalent expression for the energy, using Kohn-Sham eigenvalues:

E =
∑
i

fiεi − EH[n] + Exc[n(r)]−
∫
n(r)Vxc[n(r)]dr + Eion−ion

The total energy depends upon all atomic positions Rµ.



Hellmann-Feynman Forces

Forces on atoms are the derivatives of the total energy wrt atomic positions. The
Hellmann-Feynman theorem tells us that forces are the expectation value of the
derivative of the external potential only:

Fµ = − ∂E

∂Rµ
= −

∑
i

fi〈ψi|
∂V

∂Rµ
|ψi〉 = −

∫
n(r)

∂V

∂Rµ
dr

the rightmost expression being valid only for local potentials, V ≡ V (r) (the one at
the left is more general, being valid also for nonlocal potentials V ≡ V (r, r′)).

Demonstration (simplified). In addition to the explicit derivative of the external potential (first term),

there is an implicit dependency via the derivative of the charge density:

∂E

∂Rµ

=

∫
n(r)

∂V

∂Rµ

dr +

∫
δE

δn(r)

∂n(r)

∂Rµ

dr

The red term cancels due to the variational character of DFT: δE/δn(r) = µ, constant.

The calculation of the Hellmann-Feynman forces is straightforward (in principle, not
necessarily in practice!) once the self-consistent electronic structure is calculated.



Structural Optimization and Molecular Dynamics

Within the Born-Oppenheimer, or adiabatic approximation, the total energy as a
function of atomic positions, or Potential Energy Surface (PES), determines the
behaviour of nuclei.

The global ground state can be found by minimizing
the function E(R1,R2, ...,RN), depending upon the
3N atomic coordinates for a system of N atoms.
This is a “standard” mathematical problem: finding
the minimum of a function, knowing its derivatives,
that is, the Hellmann-Feynman forces (in the picture,
a cartoon of a PES in two dimensions with the path
to the minimum).

Once forces are calculated, one can perform not only structural optimization, but also
molecular dynamics. If a classical behaviour of the nuclei is assumed, all the machinery
of classical MD can be recycled, with forces calculated from first principles.



Diagonalization of the KS Hamiltonian

The solution of the Kohn-Sham problem HKSψ = εψ at fixed potential is (usually)
the toughest problem. How to proceed? By expanding ψ into some suitable basis set
{φi} as

ψ(r) =
∑
i

ciφi(r).

For an orthonormal basis set, we solve the secular equations∑
j

(Hij − εδij)cj = 0

where Hij = 〈φi|HKS|φj〉 are the matrix elements of the Hamiltonian.
For a non-orthonormal basis set, we solve the generalized problem:∑

j

(Hij − εSij)cj = 0

where Sij = 〈φi|φj〉 is the overlap matrix.

Diagonalization algorithms are well known in linear algebra, but in practice, one has
to resort to smarter iterative algorithms, allowing not to store those matrices.



Most popular basis sets

We have to choose now a suitable basis set. Typical candidates include

• Localized basis sets:
atom-centred functions such as

– Linear Combinations of Atomic Orbitals (LCAO)
– Gaussian-type Orbitals (GTO)
– Linearized Muffin-Tin Orbitals (LMTO)

• Delocalized basis sets:

– Plane Waves (PW)

One could also consider mixed basis sets. The Linearized Augmented Plane Waves
(LAPW) could be classified in this category.



Advantages and disadvantages of various basis sets

• Localized basis sets:

+ fast convergence with respect to basis set size (just a few functions per atom
needed)

+ can be used in finite as well as in periodic systems (as Bloch sums: φk =∑
R e
−ik·Rφ(r−R))

– difficult to evaluate convergence quality (no systematic way to improve
convergence)

– difficult to use (two- and three-centre integrals)
– difficult to calculate forces (Pulay forces if basis set is not complete)

• Plane Waves:

– slow convergence with respect to basis set size (many more PWs than localized
functions needed)

– require periodicity: in finite systems, supercells must be introduced
+ easy to evaluate convergence quality (just increase a single parameter, the cutoff)
+ easy to use (Fourier transform)
+ easy to calculate forces (no Pulay forces even if the basis set is incomplete)



3. Periodicity

Let us focus on the case of the infinite perfect crystals, having translation symmetry.
A perfect crystal is described in terms of

• a periodically repeated unit cell and a lattice of
translation vectors, defined via three primitive vectors
R1,R2,R3 and integer coefficients n1, n2, n3:

R = n1R1 + n2R2 + n3R3.

• a basis of atomic positions di into the unit cell

• a reciprocal lattice of vectors G such that
G ·R = 2πl, with l integer:

G = m1G1 +m2G2 +m3G3,
with Gi ·Rj = 2πδij and m1,m2,m3 integer.



Non periodic systems: supercells

What about e.g. defects in crystals, surfaces, alloys, amorphous materials, liquids,
molecules, clusters? none of these has perfect periodicity! One can use supercells,
introducing an artificial periodicity.

The supercell geometry is dictated by the type of system under investigation:

•

Molecules, clusters:
the supercell must allow a minimum distance of at
least a few A (∼ 6) between the closest atoms in
different periodic replica.

•

Defects in crystals:
the supercell is commensurate with the perfect crystal
cell. The distance between periodic replica of the
defect must be “big enough” to minimize spurious
defect-defect interactions.



•

Surfaces:
slab geometry. The number of layers of the materials
must be “big enough” to have “bulk behaviour” in
the furthest layer from the surface. The number of
empty layers must be “big enough” to have minimal
interactions between layers in different regions.

•
Alloys, amorphous materials, liquids:
the supercell must be “big enough” to give a
reasonable description of physical properties.

Conceptually there is no difference between a “supercell” and an ordinary unit cell:
typically, “supercell” is used when the periodicity is not perfect or non-existent



Band Structure, Bloch states

The one-electron states ψ(r) of a perfect crystal Hamiltonian H = T+V are described
by a band index i and a wave vector k.

It is convenient to consider the thermodynamic limit: a slab of crystal composed of
N = N1N2N3 unit cells, N →∞, obeying Periodic Boundary Conditions:

ψ(r +N1R1) = ψ(r +N2R2) = ψ(r +N3R3) = ψ(r).

There are N wave vectors k in the unit cell of the reciprocal lattice, called the
Brillouin Zone. The one-electron states (energy bands) can be written as

ψi,k(r) = eik·rui,k(r)

where ui,k(r) is translationally invariant:

ui,k(r + R) = ui,k(r).



Plane-wave basis set

A PW basis set for states of wave vector k is defined as

〈r|k + G〉 =
1√
NΩ

ei(k+G)·r,
h̄2

2m
|k + G|2 ≤ Ecut

Ω = unit cell volume, NΩ = crystal volume, Ecut = cutoff on the kinetic energy of
PWs (in order to have a finite number of PWs!). The PW basis set is complete for
Ecut →∞ and orthonormal: 〈k + G|k + G′〉 = δGG′

In a PW basis set one works with Fourier components (ci,k+G below):

|ψi〉 =
∑
G

ci,k+G|k + G〉

ci,k+G = 〈k + G|ψi〉 =
1√
NΩ

∫
ψi(r)e−i(k+G)·rdr = ψ̃i(k + G).

Real-space quantities can be obtained on a grid using Fast Fourier Transform.



4. The need for Pseudopotentials

Are PWs a practical basis set for electronic structure calculations? Not really!
From simple Fourier analysis: length scale δ −→ Fourier components up to q ∼ 2π/δ.
In a solid, this means ∼ 4π(2π/δ)3/3ΩBZ PWs (volume of the sphere of radius q
divided by ΩBZ = 8π3/Ω, volume of the Brillouin Zone).

Estimate for diamond: 1s wavefunction has δ '
0.1 a.u., Ω = (2π)3/(a30/4) with lattice parameter
a0 = 6.74 a.u. −→ 250, 000 PWs! We need to:

• get rid of core states

• get rid of orthogonality wiggles close to the
nucleus

0 0.5 1 1.5 2 2.5 3 3.5 4
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1

2

R
(r)

C 1s2 2s2 2p2

1s
2s
2p

Solution: Pseudopotentials (PP). A smooth effective potential that reproduces the
effect of the nucleus plus core electrons on valence electrons.



Understanding Pseudopotentials

Smoothness and transferability are the relevant keywords:

• We want our pseudopotential and pseudo-orbitals to be as smooth as possible so
that expansion into plane waves is convenient (i.e. the required kinetic energy
cutoff is small)

• We want our pseudopotential to
produce pseudo-orbitals that are as
close as possible to true (“all-
electron”) orbitals outside the core
region, for all systems containing a
given atom (in the figure: all-electron
and pseudo-orbitals for Si)

Of course, the two goals are usually
conflicting!

Pseudopotentials have a long story: let’s start from the end.



Understanding PP: Projector-Augmented Waves

Let us look for a linear operator T̂ connecting all-electron orbitals |ψi〉 to pseudo-

orbitals |ψ̃i〉 as in: |ψi〉 = T̂ |ψ̃i〉. Pseudo-orbitals will be our variational parameters.

We write the charge density, energy, etc. using pseudo-orbitals and T̂ instead of
all-electron orbitals.

The operator T̂ can be defined in terms of its action on atomic waves (i.e. orbitals at
a given energy, not necessarily bound states):

• |φl〉: set of atomic all-electron waves (bound or unbound states)

• |φ̃l〉: corresponding set of atomic pseudo-waves. Beyond some suitable “core

radius” Rl, φ̃l(r) = φl(r); for r < Rl, φ̃l(r) are smooth functions.

(P. E. Blöchl, PRB 50, 17953 (1994))



Understanding PP: the PAW transformation

If the above sets are complete in the core region, the operator T̂ can be written as

|ψi〉 = T̂ |ψ̃i〉 = |ψ̃i〉+
∑
l

(
|φl〉 − |φ̃l〉

)
〈βl|ψ̃i〉

where the βl “projectors” are atomic functions, having the properties 〈βl|φ̃m〉 = δlm
and βl(r) = 0 for r > Rl. The logic is described in the picture below:

The pseudopotential itself is written as a nonlocal operator, V̂ , in terms of the βl
projectors:

V̂ ≡ Vloc(r) +
∑
lm

|βl〉Dlm〈βm|

(Vloc contains the long-range Coulomb part −Ze2/r)



Understanding PP: Charge in PAW

The (valence) charge density is no longer the simple sum of |ψ̃i|2:

n(r) =
∑
i

fi|ψ̃i(r)|2 +
∑
i

fi
∑
lm

〈ψ̃i|βl〉Qlm(r)〈βm|ψ̃i〉,

and
Qlm(r) = φ∗l (r)φm(r)− φ̃∗l (r)φ̃m(r).

The augmentation charges Qlm(r) are zero for r > Rl. A generalized orthonormality
relation holds for pseudo-orbitals:

〈ψ̃i|S|ψ̃j〉 =

∫
ψ̃∗i (r)ψ̃j(r)dr +

∑
lm

〈ψ̃i|βl〉qlm〈βm|ψ̃j〉 = δij

where qlm =

∫
Qlm(r)dr. The Dlm quantites and βl, Qlm functions are atomic

quantities that define the PP (or PAW set).



PP taxonomy: PAW, Ultrasoft, norm-conserving

• In the full PAW scheme, the augmentation functions are calculated and stored on a
radial grid, centred at each atom. The charge density is composed by a “smooth”
term expanded into plane waves, and an “augmentation” term calculated on the
radial grid (Kresse and Joubert, PRB59, 1759 (1999))

• In the Ultrasoft PP scheme (D.Vanderbilt, B 41, R7892 (1990)), the augmentation
functions Qlm(r) are pseudized, i.e. made smoother: both “smooth” and
“augmentation” terms can be calculated on a FFT grid, in either reciprocal
or real space. The latter term usually requires a larger grid in G-space than the
former

• If we set Qlm(r) = 0, we obtain good old norm-conserving PPs (Hamann, Schlüter,
Chiang 1982) in the separable, nonlocal form.



Which pseudopotentials are good for me?

• Norm-conserving:

+ are simple to generate and to use. Theory and methodological improvements are
invariably implemented first (and often only) for norm-conserving PPs

– are relatively hard: core radii Rl cannot exceed by much the outermost maximum
of the valence atomic orbitals, or else the loss of transferability is large. For
some atoms: 2p elements C, N, O, F, 3d transition metals, 4f rare earths, this
restriction may lead to very high plane-wave cutoffs (70 Ry and up)

– do not give any sensible information about the orbitals close to the nucleus
(all-electron orbitals can be “reconstructed” using the PAW transformation)

This is usually your first choice and starting point.



Which pseudopotentials are good for me? (II)

• Ultrasoft:

+ can be made smooth with little loss of transferability: core radii Rl can be
pushed to larger values, even for “difficult cases”. Cutoffs of 25 to 35 Ry are
usually good for most cases. Note that you may need a second FFT grid for
augmentation charges, with typical cutoff 8÷12× orbital cutoff (instead of 4)

- are not simple to generate: the pseudization of augmentation charges is often a
source of trouble (e.g. negative charge)

- introduce additional terms in the formalism: some property calculations may not
implemented

– give even less information about the orbitals close to the nucleus (all-electron
orbitals can be “reconstructed”)

Ultrasoft PPs are typically used in all cases where
norm-conserving PPs are too hard: C, N, O, F, 3d
elements, “semicore” states



Which pseudopotentials are good for me? (III)

• PAW:

+ most transferrable, even for atoms that are “difficult” for Ultrasoft PPs (e.g.
magnetic materials): accuracy is comparable to all-electron techniques (e.g.
FLAPW)

+ give information about the orbital close to the nucleus
- as complex to generate as Ultrasoft PPs
- introduce even more additional terms in the formalism: some property

calculations may not implemented



Which pseudopotentials are good for me? (IV)

There are a few more aspect to be considered in the choice of a pseudopotential:

• PPs are bound to a specific XC functional, at least in principle. Exception: Hybrid,
nonlocal (vdW-DF), meta-GGA functionals, for which very few (or no) PPs are
available. Typically, PPs computed from the most similar GGA are used instead.

• The distinction between “core” and “valence” electrons is not always clear-cut. In
some cases you may need to extend “valence” to include the so-called semicore
states in order to achieve better (or less lousy) transferability. E.g.: 3d states in
Zn and Ga; 3s and 3p states in 3d transition metals Fe, Co, Ni, ...

Inclusion of semicore states adds considerable complexity to both the generation and
the practical usage of a PP: to be done only if needed.



Where do I find pseudopotentials?

There are many ready-to-use PPs tables around, but there is not a single standard PP
file format: each code has its own format.

Quantum ESPRESSO accepts an XML-like format called UPF, plus some old
formats. See the pseudopotential page on the web site
pseudopotentials.quantum-espresso.org, for more on

• PSlibrary: a project by A. Dal Corso to set up verified PPs for most elements

• other available PPs in UPF format (and their naming convention)

• other pseudopotential repositories, conversion from other formats

If everything else fails, PPs have to be generated.



Pseudopotential testing

PPs must be always tested to check for

• absence of ghost states: spurious unphysical states in the valence region of energies,
or close to it. All nonlocal PPs can be affected

• poor transferability

Testing can be performed

• by the PP generation code itself, by
comparing energy differences between electronic
configurations, and logarithmic derivatives;

• in simple molecular or solid-state systems, ideally by comparing with accurate
all-electron results; less ideally, with other PP results; even less ideally, with
experimental data



Pseudopotential vs all-electron calculations

Systematic comparisons of different pseudopotential and all-electron DFT codes:
Reproducibility in density-functional theory calculations of solids, K. Lejaeghere et
multis aliis, Science 351 (6280), aad3000 (2016), DOI 10.1126/science.aad3000

Tests precision of the computational methods, not physical accuracy of results.
Main outcomes: 1) PPs and all-alectron calculations have comparable precision, and
2) everybody is converging towards the same set of results,



PW-PP method, iterative diagonalization

The solution of (H − ε)ψi = 0 for a large
N × N matrix costs TCPU = O(N3). Too
much for most applications: N , the number of
PWs, can be very large for large supercells...
...but we actually need only the lowest
occupied M << N eigenvectors. Solution:
Iterative diagonalization. Based on iterative
refinement of a trial solution. Refinement is
stopped when the reached accuracy is deemed
sufficient. Typical algorithm: Block Davidson.

Iterative diagonalization is very convenient in conjunction with SCF iteration:

• high accuracy not needed in the first iterations

• starting trial wavefunctions available from previous iteration

• needed approximate inverse matrix easily calculated (H is diagonally dominated)



5. Brillouin Zone sampling

• The calculation of the charge density (and
of many other quantities) requires sums
over all k-points in the Brillouin Zone (BZ);
in practice, some form of BZ sampling is
needed. Convergence wrt k-point sampling
must be tested!

• For insulators in large supercells, amorphous
systems, liquids, molecules, sampling with
Γ (k = 0) only is fine. For other insulators,
a small number of k-points is usually
sufficient.

• For metals, a very fine sampling of the Fermi surface, together
with some broadening, or smearing, technique, is needed. One
could in principle use Fermi-Dirac occupations at finite T , but
this would require either very high T or too fine sampling



Metals: broadening technique

The practical way to deal with metals uses a broadening σ in the following way:

∑
i

fiεi →
∫ εF

−∞
δ(
ε− εi
σ

)εdε =
∑
i

θiεi +
∑
i

δi,

where δ(x) is a gaussian or similar function centered around x = 0,

θi =

∫ εF

−∞
δ(
ε− εi
σ

)dε, δi =

∫ εF

−∞
δ(
ε− εi
σ

)(ε− εi)dε = σ2

∫ (εF−εi)/σ

−∞
xδ(x)dx,

and εF is determined by the condition
∑
i fi = number of electrons. It is equivalent

to introduce a fictitious “temperature” σ/kB and the corresponding “free energy”.

Specially tailored broadening functions (Marzari-Vanderbilt, Methfessel-Paxton),
ensure fast convergence. This must be tested by performing several runs at different
σ for increasingly dense k-point grids, until a suitable k-point grid and σ are found
yielding satisfactorily converged results.



Grids of k-points for Brillouin Zone sampling

Typical ways of sampling the Brillouin Zone (BZ):

• Special Points (e.g. Baldereschi, Chadi and Cohen)
Points designed to give quick convergence for particular crystal structures.

• Uniform Grids (e.g. Monkhorst-Pack)
Equally spaced in reciprocal space. May be centred on origin (“non-shifted”) or
not (“shifted”).

In presence of symmetry, only k-
points in the Irreducible BZ, or
IBZ, need to be computed: the
charge density is reconstructed
using symmetry. Appropriate
weights for k-points must be
specified (or can be calculated).



Plane-Wave Pseudopotential method, summary

• Supercell geometry: lattice
vectors + atoms in the unit
cell

• Plane-wave basis set,
determined by the lattice
and by a single parameter
(cutoff)

• Atom-based pseudopotentials
representing the electron-
nuclei potential (Vnuc in the
figure)

• Charge density computed with
valence electrons only, on a
suitable grid of k-points.


