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Hellmann-Feynman Forces

Forces on atoms are the derivatives of the total energy wrt atomic positions. The
Hellmann-Feynman theorem tells us that forces are the expectation value of the
derivative of the external potential only:

Fµ = − ∂E

∂Rµ
= −

∑
i

fi〈ψi|
∂V

∂Rµ
|ψi〉 = −

∫
n(r)

∂V

∂Rµ
dr

the rightmost expression being valid only for local potentials, V ≡ V (r) (the one at
the left is more general, being valid also for nonlocal potentials V ≡ V (r, r′)).

Demonstration (simplified). In addition to the explicit derivative of the external potential (first term),

there is an implicit dependency via the derivative of the charge density:

∂E

∂Rµ

=

∫
n(r)

∂V

∂Rµ

dr +

∫
δE

δn(r)

∂n(r)

∂Rµ

dr

The red term cancels due to the variational character of DFT: δE/δn(r) = µ, constant.

The calculation of the Hellmann-Feynman forces is straightforward (in principle, not
necessarily in practice!) once the self-consistent electronic structure is calculated.



Structural Optimization and Molecular Dynamics

Within the Born-Oppenheimer, or adiabatic approximation, the total energy as a
function of atomic positions, or Potential Energy Surface (PES), determines the
behaviour of nuclei.

The global ground state can be found by minimizing
the function E(R1,R2, ...,RN), depending upon the
3N atomic coordinates for a system of N atoms.
This is a “standard” mathematical problem: finding
the minimum of a function, knowing its derivatives,
that is, the Hellmann-Feynman forces (in the picture,
a cartoon of a PES in two dimensions with the path
to the minimum).

Once forces are calculated, one can perform not only structural optimization (also
known as “relaxation”), but also molecular dynamics. If a classical behaviour of the
nuclei is assumed, all the machinery of classical MD can be recycled, with forces
calculated from first principles.



Structural optimization



Structural optimization in periodic systems

Beware: in a periodic system, there are two distinct kinds of displacements:

• atomic displacements inside the unit cell, determined by the forces. Forces are the
derivatives of the total energy with respect to atomic positions in the cell and are
computed as

Fµ −
∂E

∂Rµ
= −

∑
i

fi〈ψi|
∂V

∂Rµ
|ψi〉

• elastic displacements changing the shape of the unit cell, determined by the stresses.
If a strain εαβ is applied to all coordinates: rα −→ (1 +

∑
γ εαγrγ), the stress σαβ

is the derivatives of the total energy with respect to the strain:

σαβ = − 1

Ω

∂E

∂εαβ

and can be computed from the ground-state Kohn-Sham orbitals. 1

Note that the pressure is related to the stress via P = −1

3
Trσ.

1Nielsen and Martin, PRB 3780 and 3792, 1985



Simple case: finding the equilibrium volume

For simple crystals, the global ground state can
be found by calculating for a few values of the
lattice parameter the E(V ) curve, fitting it to
a phenomenological equation of state (EOS) like
Murnaghan’s:

P (V ) =
B

B′

[(
V0
V

)B′
− 1

]

(the E(V ) formula can be obtained by observing
that the pressure P = −∂E/∂V ). Equilibrium
volume V0, bulk modulus B and its pressure
derivative B′ are the fit parameters.

In the picture from a famous Yin-Cohen 1980 paper, the energies of different candidate
structures for Si can be compared, phase transitions under pressure found.

Note that in simple crystalline structures the force on atoms can be zero by symmetry,
even if the system is not at equilibrium!



Note on incompleteness of the PW basis set

Practical calculations are invariable performed with
a cutoff ”as low as possible”, sometimes quite far
from convergence. The consequence are especially
visible when comparing the E(V ) curve at fixed
cutoff and the same at fixed number of plane waves:
the curve at low cutoff is ”rigged”, the pressures
calculated from the stress and from the equation of
state do not match. This is a manifestation of the
Pulay incomplete-basis-set error on the stress: plane
waves depend upon the strain via the unit cell.

The strategy ”fixed cutoff + fit to an EOS” converges
faster than fixing the number of PWs. The latter
is equivalent to locating the zero of the computed
pressure (via the stress).

The incompleteness of basis set is not as serious as it may look: energy differences
between different structures, structural parameters such as lattice parameters and
bond lengths, converge much quicker than absolute energies.



Quasi-Newton algorithms for structural optimization

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is the workhorse for
structural minimization, either at fixed cell or with variable cell.

Close to an equilibrium point ~X(eq), for which ∇E( ~X(eq)) = 0 holds, a quadratic form

is assumed for the function E( ~X) (H is the Hessian matrix):

E( ~X) ' E( ~X(eq)) +
1

2
( ~X − ~X(eq))TH( ~X − ~X(eq))

Given two points ~X1 and ~X0 and corresponding gradients ~g = ∇E( ~X) , this means

~g1−~g0 = H( ~X1− ~X0), that is, ~g1 = 0 if ~X1 = ~X0−H−1~g0 (Newton-Raphson step).

Practical algorithm: a sequence of calculations at positions ~Xi

~Xi+1 = ~Xi + TLk
~sNRk
|sNRk |

, ~sNRk = −H−1k ~gk

where TLk is called ”trust radius”.



The inverse Hessian matrix is updated at each step using the BFGS scheme:

• At fixed cell:

– ~X = (~d1, . . . , ~dN), atomic positions

– ~g = −(~f1, . . . , ~fN), Hellmann-Feynman forces on atoms

• With variable cell:

– ~X = (~d1, . . . , ~dN , εαβ), atomic positions and cell strains

– ~g = −(~f1, . . . , ~fN , σαβ), Hellmann-Feynman forces on atoms and stresses



Some important aspects of structural optimization

• Structural optimization may find only the closest minimum: it cannot overcome
potential barriers, so it may be trapped into a local minimum.

• Structural optimization does not break crystal symmetry, at least in principle
(numerical noise may occasionally break the symetry).

• In variable-cell optimization, the PW basis set is kept fixed during optimization.
This means that the final result is not exactly equal to what one gets by starting
the calculation from scratch with the same cutoff, because the two basis sets are
not exactly the same.

• Structural optimization uses both energies and forces to locate the minima along
search directions. Discrepancies between those values, due to insufficient scf
convergence, will lead to bad convergence of the BFGS algorithm or even to errors.
Remember that the error on forces is linear in the self-consistency error, while the
error on energies is quadratic due to its variational character.



Born-Oppenheimer Molecular Dynamics

Let us assume classical behavior for the nuclei and electrons in the ground state. We
introduce a classical Lagrangian:

L =
1

2

∑
µ

MµṘ
2
µ − E(R)

describing the motion of nuclei. The equations of motion:

d

dt

∂L

∂Ṙµ

− ∂L

∂Rµ
= 0, Pµ =

∂L

∂Ṙµ

are nothing but usual Newton’s equations:

Pµ ≡MµVµ, MµV̇µ = Fµ,

that can be discretized and solved by integration.
This procedure defines Molecular Dynamics “on
the Born-Oppenheimer surface”, with electrons
always at their instantaneous ground state.



Discretization of the equation of motion

Like in classical MD, the equation of motions can be discretized using the Verlet
algorithm:

Rµ(t+ δt) = 2Rµ(t)−Rµ(t− δt) +
δt2

Mµ
Fµ(t) +O(δt4)

Vµ(t) =
1

2δt
[Rµ(t+ δt)−Rµ(t− δt)] +O(δt3).

or the Velocity Verlet:

Vµ(t+ δt) = Vµ(t) +
δt

2Mµ
[Fµ(t) + Fµ(t+ δt)]

Rµ(t+ δt) = Rµ(t) + δtVµ(t) +
δt2

2Mµ
Fµ(t).

Both sample the microcanonical ensemble, or NVE: the energy (mechanical energy:
kinetic + potential) is conserved.



More kinds of molecular dynamics

• By adding a damping term, damped dynamics may be used as an alternative to
BFGS for energy minimization. Usually BFGS is faster, but damped dynamics
allows to easily implement constraints via the SHAKE technique

• With appropriate thermostats, molecular dynamics samples the canonical ensemble
(NVT): the average temperature

〈
N∑
µ=1

P2
µ

2Mµ
〉NV T =

3

2
NkBT

is fixed (while the instantaneous value may oscillate around the desired value)

• Variable-cell molecular dynamics samples the NPT ensemble, i.e., at fixed average
pressure (and temperature).

A variety of molecular dynamics algorithms and of thermostats are available in
Quantum ESPRESSO.



Technicalities

• time step as big as possible, but small enough to follow nuclear motion with little
loss of accuracy. Rule of thumb: δt ∼ 0.01− 0.1δtmax, where δtmax = 1/ωmax =
period of the fastest phonon (vibrational) mode.

• calculations of forces must be very well converged (good self-consistency needed)
at each time step or else a systematic drift of the conserved energy will appear

Note that:

– the error on DFT energy is a quadratic function of the self-consistency error of
the charge density (because energy has a minimum in correspondence to the
self-consistent charge)

– the error for DFT forces is a linear function of the self-consistency error of the
charge density

As a consequence, Born-Oppenheimer MD is usually computationally heavy



Car-Parrinello Molecular Dynamics

The idea: introduce a fictitious electron dynamics that keeps the electrons close to the
ground state. The electron dynamics is faster than the nuclear dynamics and averages
out the error, but not too fast so that a reasonable time step can be used

Car-Parrinello Lagrangian:

L =
m∗

2

∑
i

∫
|ψ̇i(r)|

2
dr+

1

2

∑
µ

MµṘ
2
µ−E[R, ψ]+

∑
i,j

Λij

(∫
ψ∗i (r)ψj(r)dr− δij

)
generates equations of motion:

m∗ψ̈i = Hψi−
∑
j

Λijψj, MµR̈µ = Fµ ≡ −
∂E

∂Rµ

m∗ = fictitious electronic mass
Λij = Lagrange multipliers, enforcing
orthonormality constraints.
Very effective, but requires a judicious choice of
simulation parameters.



Car-Parrinello Molecular Dynamics (2)

• electronic degrees of freedom ψi are the expansion coefficients of KS orbitals into
a suitable basis set (typically Plane Waves for technical reasons)

• ”forces” on electrons are determined by the KS Hamiltonian calculated from current
values of ψi and of Rµ

• ”forces” acting on nuclei have the Hellmann-Feynman form:

∂E

∂Rµ
=
∑
i

〈ψi|
∂V

∂Rµ
|ψi〉

but they slightly differ from ”true” forces (ψi are not exact ground-state orbitals)

• The simulation is performed using classical MD technology (e.g. Verlet) on both
nuclear positions and electronic degrees of freedom (Kohn-Sham orbitals)

• Orthonormality constraints are imposed exactly at each time step, using an iterative
procedure



Car-Parrinello technicalities

• Starting point: bring the electrons to the ground state at fixed nuclear positions –
this can be achieved using damped dynamics.

• Next step is often to bring the system to an equilibrium state – this can also be
achieved using damped dynamics for both electrons and nuclei.

• The fictitious electronic mass m∗ must be big enough to enable the use of a
reasonable time step, but small enough to guarantee

– adiabaticity, i.e. no energy transfer from nuclei to electrons, which always
remain close to the ground state (no systematic increase of the fictitious “kinetic
energy” of the electronic degrees of freedom)

– correctness of the nuclear trajectory

Typical values: m∗ ∼ 100÷ 400 electron masses

• The time step δt should be the largest value that yields a stable dynamics (no
drifts, no loss of orthonormality). Typical values: δt ∼ 0.1÷ 0.3 fs


