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1. Reminder on “plain” DFT: LDA and GGA, and its failures
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Performances of LDA and GGA: atoms, small molecules

LDA underestimates the stability of atoms; GGA is close to experiments.

A few binding energies of small molecules:

Eb (eV) exp. LDA GGA HF
H2 4.753 4.913 4.540 3.64
LiH 2.509 2.648 2.322
O2 5.239 7.595 6.237 1.28
H2O 10.078 11.567 10.165
F2 1.66 3.32 1.37

Binding energy is too high in LDA. GGA is closer to experiments, but sometimes its
binding is too weak. Hartree-Fock without corrections yields very bad results.



Lattice parameters in solids

a (A) exp. LDA ∆ GGA ∆
Si 5.43 5.40 -0.50% 5.49 1.16%
Ge 5.65 5.62 -0.53% 5.47 1.59%
GaAs 5.65 5.62 -0.53% 5.73 1.42%
Al 4.03 3.98 -1.31% 4.09 1.57%
Cu 3.60 3.52 -2.35% 3.62 0.44%
Ag 4.07 4.00 -1.69% 4.17 2.47%
Ta 3.30 3.26 -1.12% 3.32 0.80%
W 3.16 3.14 -0.67% 3.18 0.67%
Pt 3.91 3.90 -0.41% 3.97 1.49%
Au 4.06 4.05 -0.13% 4.16 2.48%

LDA tends to “overbind”, GGA to “underbind”. GGA error more variable.



Bulk modulus in solids

B (GPa) exp. LDA ∆ GGA ∆
Si 99 96 -3.0% 83 -16.2%
Ge 77 78 1.3% 61 -20.8%
GaAs 76 74 -2.6% 65 -14.5%
Al 77 84 9.1% 73 -5.2%
Cu 138 192 39.1% 151 9.4%
Ag 102 139 36.3% 85 -16.7%
Ta 193 224 16.1% 197 2.1%
W 310 337 8.7% 307 -1.0%
Pt 283 307 8.5% 246 -13.1%
Au 172 198 15.1% 142 -17.4%

LDA tends to be too “stiff”, GGA to be too “soft”



Lattice parameters of oxides

a (A) exp. LDA ∆ GGA ∆
MgO 4.21 4.17 -1.0%
TiO2(a) 4.59 4.55 -0.9% 4.62 0.7%
TiO2(c) 2.96 2.94 -0.5% 2.99 1.0%
Al2O3 5.13 5.09 -0.7% 5.19 1.1%
BaTiO3 4.00 3.94 -1.5%
PbTiO3 3.90 3.83 -1.7% 3.89 -0.2%
SnO2 4.74 4.64 -2.1%
β−MnO2(a) 4.40 4.35 -1.3% 4.44 0.9%
β−MnO2(c) 2.88 2.81 -2.3% 2.89 0.5%

Same pattern for “difficult” materials like oxides: results not bad, but electronic states
often more wrong than structural data



Beyond the reach of LDA and GGA

We do not know the exact exchange-correlation (XC) energy and potential functionals,
but we know that they must be highly nontrivial objects. In particular:

• the XC potential exactly cancels the self-interaction of an electron with itself that is
present in the Hartree potential (as in Hartree-Fock: note that the XC potential is
local: Vxc ≡ Vxc(r), thus much simpler than nonlocal exchange in Hartree-Fock).

• the XC energy as a function of the number of
electrons has a cusp when the number of electrons
crosses an integer value number. No simple, local
function of the charge density (and of its gradient)
can fullfil this requirement.

The presence of spurious self-interactions and the lack of discontinuity is at the heart
of most problems with approximate DFT. The search for functionals that may solve
such problems in an economical way is a very active research field.



Performances of LDA and GGA, summary

+ Excellent structural results: correct prediction of crystal structures, bond lenghts,
lattice parameters (within 1÷ 2%), binding and cohesive energies (GGA 5 to 10%;
LDA much worse, strongly overestimates), vibrational properties. Especially good
for sp−bonded materials but good also for more ”difficult” materials, such as
transition metal compounds.

– The infamous band gap problem:
εc − εv (or HOMO-LUMO in
quantum chemistry parlance) wildly
underestimates the true band gap:
∆ = I − A, where I is the ionization
potential (I = E(n)−E(n−1)), A the
electron affinity (A = E(n+1)−E(n))



Performances of LDA and GGA (2)

– Serious trouble in dealing with strongly correlated materials, such as e.g.
transition metal oxides: sometimes the occupancy of atomic-like electronic states
is badly wrong, sometimes the electronic structure is incorrect in more subtle ways.

– Incorrect treatment of van der Waals
interactions: LDA works only apparently
(due to overbinding), GGA doesn’t bind.
Deep reason: van der Waals is nonlocal,
doesn’t depend upon charge overlap.
No functional based on local density
and gradients can account for it: no
charge overlap, no interactions.

(in the picture: energy vs distance for an O2 molecule over graphene)



“Beyond-GGA” functionals

An incomplete list of advanced functionals, addressing (most or at least part of the)
shortcomings of LDA and GGA, especially in strongly correlated materials:

• Self-Interaction Correction. is Self-Interaction a problem? let’s remove it! The
first proposal of a Self-Interaction Correction (SIC) for extended systems, by Perdew
and Zunger dates back to 1980. The functional becomes orbital-dependent, leading
to some fundamental and numerical problems and unclear performances, so it never
really took off. New ideas have since appeared and look more promising.

quantum ESPRESSO implements in the Car-Parrinello code CP a simple form
of SIC (D’Avezac et al.) working for systems with a single unpaired spin.



Meta-GGA

In Meta-GGA (meta = beyond), the functional has a further dependence upon the
non-interacting kinetic energy density τ(r):

τσ(r) =
1

2

∑
i

|∇ψi,σ(r)|2, σ = +,−

The XC energy is written as

Exc[n(r)] =

∫
εmGGA(n(r),∇n(r), τ(r))n(r)dr

or, in the spin-polarized version, as

Exc[n+(r), n−(r)] =

∫
εmGGA(n+(r), n−(r),∇n+(r),∇n−(r), τ+(r), τ−(r))n(r)dr.

The Kohn-Sham Hamiltonian contains an additional term:

δExc[n]

δψi(r)
= . . .− 1

2

(
∇∂εmGGA

∂τ(r)

)
· (∇ψi(r))



Meta-GGA (2)

Meta-GGA functionals are likely the simplest example of “orbital-dependent”
functionals, potentially having more flexibility, better behavior with respect to self-
interaction, etc. The formulation of meta-GGA is somewhat more complex, but not
much more, than plain GGA, thus making it a potentially cheap extension of GGA.

Meta-GGA consistently improves upon GGA, but it is numerically very unstable (i.e.
self-consistently is very slow to converge, or even diverges), and thus not so much
used, in spite of its promises. The recently introduced SCAN functional seems to
yield excellent results and to be less unstable than early meta-GGA functionals like
TPSS. Still, very dense FFT grids are needed in order to deal with the additional term
appearing in the Hamiltonian.

quantum ESPRESSO implements a few meta-GGA functionals directly (TPSS,
M06L, TB09), others via libxc (e.g., SCAN) in ground-state calculations only (i.e.
no linear response) and for Norm-Conserving PPs only. Only a few true meta-GGA
PPs are currently available.



DFT+U

In DFT+U a Hubbard-like term, accounting for strong Coulomb correlations in systems
with highly localized, atomic-like states, is added to the XC functional:

EDFT+U [n(r)] = EDFT [n(r)] + EU [n(r)].

In the simplified rotationally invariant method (S. L. Dudarev et al., Phys.Rev. B, 57,
1505 (1998)), the Hubbard term has the form:

EU [n(r)] =
U

2

∑
σ

Tr[nσ(1− nσ)],

U being a (system-dependent) Coulomb repulsion (typically a few eV) and nσ is the
matrix of orbital occupancies for a set of atomic-like states φm:

nσmm′ =
∑
σ

∑
i

fσi 〈ψσi |Pmm′|ψσi 〉, Pmm′ = |φm〉〈φm′|

The computation of additional U terms in the Kohn-Sham Hamiltonian and in the
energy is not a significant overhead. DFT+U calculations are however often slow to
converge (or do not converge to the desired ground state)



DFT+U (2)

There are several variants of DFT+U, with more parameters, and several possible
choices of atomic-like states (simpler choice: atomic states, not orthogonalized)

DFT+U is an economical solution for a deep
problem of DFT: the lack of discontinuity in
approximated functionals, due to incomplete
self-interactions cancellation, favors fractionary
occupancy. In the picture, the behavior of a
system connected to a reservoir of electrons, as a
function of the occupancy N .

U can be taken as an adjustable parameter, but the above picture suggests that U
can be computed from first principles extracting it from the fictitious curbature of the
XC functional:

U ≡ ∂2EDFT
∂n2

, n =
∑
σ

Tr[nσ]

The procedure is described in detail in M. Cococcioni and S. de Gironcoli, Phys. Rev.
B 71, 035105 (2005). A linear-response based procedure is implemented in code HP.



Hybrid functionals

Hybrid functionals, such as B3LYP or PBE0, containing some amount of exact
exchange, as in Hartree-Fock theory (spin-restricted case for simplicity):

E = Ts +

∫
n(r)V (r)dr + EH −

e2

2

∑
i,j,‖

∫
ψ∗i (r)ψj(r)ψ∗j (r

′)ψi(r
′)

|r− r′|
drdr′︸ ︷︷ ︸

EHFx

In Hybrid DFT:

E = Ts +

∫
n(r)V (r)dr + EH +

Ehybxc︷ ︸︸ ︷
αxE

HF
x + (1− αx)EDFTx + EDFTc ,

with αx = 20 ÷ 30%. This is the method of choice in Quantum Chemistry, yielding
very accurate results and correcting most GGA errors, at the price of an additional
parameter (the amount of exact exchange).

quantum ESPRESSO implements most popular hybrid functionals: B3LYP, PBE0,
HSE, gau-PBE, for NC-PPs and (with some restrictions) US-PPs. In a plane-wave
basis set, however, hybrid functionals are computationally very heavy.



Exact Exchange Potential with Plane Waves

The calculation of V̂xψk,v proceeds as follows:

• bring bands to real space with FFT:

ψk,v(G)
FFT−→ ψk,v(r)

• for each wave-vector q and each occupied band v′, build “charge densities” ρq(r):
ρq(r) = ψ∗k−q,v′(r)ψk,v(r)

• bring “charge” to reciprocal space with FFT, solve Poisson equation:

ρq(r)
FFT−→ ρq(G), Vq(G) =

4πe2

|q + G|2
ρq(G)

• FFT back to real space, multiply by occupied band at k − q, add to the result:

Vq(G)
FFT−→ Vq(r), (V̂xψk,v)(r) = (V̂xψk,v)(r) + Vq(r)ψk−q,v′(r)

In practical calculations, k′ = k− q spans the same finite grid of k-points {k}. Note
that while symmetry can be exploited to compute only ψk with k’s in the Irreducible
Brillouin Zone, all ψk−q are needed, not just those in the IBZ.



The q + G = 0 divergence

In periodic systems, the exact exchange contains a divergence when q + G = 0:

EHFx = −4π

2Ω
× Ω

(2π)3

∫
dq
∑
G

A(q + G)

|q + G|2

where

A(q + G) =
Ω

(2π)3

∫
dk|ρk−q,v

′

k,v (q + G)|2 ≡ 1

Nk

∑
k

|ρk−q,v
′

k,v (q + G)|2

(the finite sum over Nk k-points is what we actually compute) and

ρk−q,v
′

k,v (r) = ψ∗k−q,v′(r)ψk,v(r).

This divergence is integrable, see: F.Gygi and A.Baldereschi, PRB 34, 4405 (1986)

Beware: this is good for 3D systems, not necessarily for 2D and 1D ones



Practical algorithm

• For any given grid of Nk k-points, you need to define a subgrid of Nq ≤ Nk
q−vectors. In principle it should span all k−points, in practice it may be smaller.

• Self-consistency is first achieved with closest LDA/GGA functional; then V̂x is
turned on and a double self-consistency loop is started (self-consistency is reached
at fixed V̂x, then V̂x is updated with new wavefunctions, and so on)

• Scaling: rather catastrophic. V̂xψ requires at least O(4NkNqM
2N logN) floating-

point operations for M bands and N points in the FFT grid, vs O(2NkMN logN)
for Vxcψ in plain DFT. Tricks for speeding up the calculation:

– Use a reduced q−vector grid (when applicable): variables nqx1,nqx2,nqx3

– Use a reduced cutoff for FFT’s done in V̂xψ: variable ecutfock

– Use many processors, with the “band” parallelization

Even with these tricks, hybrid functional calculations are soooo slow.



Recent advances: ACE

A significant speeudp can be obtained with Adaptively Compressed Exchange (ACE:
Lin, JCTC, 12, 2242 (2016); Damle, Lin, Ying, JCTC, 11, 1463 (2015)). We project
the exchange operator over the set of occupied orbitals:

V̂ ACEx =
∑
i,j

V̂x|ψi〉M−1ij 〈ψj|V̂x

where Mik = 〈ψi|V̂x|ψj〉 is the exchange matrix. The M−1 is factorized via Cholesky

decomposition and V̂ ACEx takes the form

V̂ ACEx =
∑
i

|ξi〉〈ξi|, (1)

where L−T is the Cholesky factor of M−1,

ξi =
∑
j

V̂X|ψi〉L−Tij (2)

V̂ ACEx is used instead of V̂x in each fixed-exchange self-consistency loop.



Recent advances: ACE (2)

The ACE operator is perfectly equivalent to the true exchange operator on the
manifold used for the projection, and the procedure converges to exactly the same
results. The computation of ACE is much faster than the computation of the true
exchange operator. In the picture below, a realistic case.



Recent advances: SCDM localization

The key to achieve even better performances is orbital localization. There are various
ways to localize orbitals in real space, the most famous being the transformation to
Wannier orbitals.

The density matrix, γ(r, r′) =
∑
j ψ
∗
j (r
′)ψj(r), is naturally localized, at least in

insulators: for large |r − r′|, γ(r, r′) ∼ exp(−α|r − r′|) asymptotically. This means
that the functions w(r) =

∑
j cjψj(r), with cj = ψ∗j (r

′), are localized.

The set of w’s above is redundant: we need a way to select the best manifold among
the many possibles, without storing the density matrix.

This can be achieved using the selected columns of the density matrix (SCDM)
algorithm. This is an algebraic procedure that requires a standard QR decomposition
(actually, only the pivoting part): Lin, JCTC, 12, 2242 (2016); Damle, Lin, Ying,
JCTC, 11, 1463 (2015).

Once orbitals are localized, exchange integrals between non-overlapping orbitals can
be discarded: we just need to choose a criterion and to set a threshold.



Recent advances: SCDM localization (2)

The localization is especially effective in large supercells with many atoms. In the
figure below, the wall time for one SCF as a function of the number of atoms of
various amorphous silica supercells (T ∝ Nα, α is the number reported to the right).
The criterion for discarding exchange integrals is Sij =

∫
dr|wi(r)||wj(r)| < Sthr

a) PBE0 hybrid functional, no ACE
b) PBE0 with ACE, no localization
c) d) PBE0 with ACE and localization
Sthr = 0.002 and = 0.004 respectively
e) PBE

I. Carnimeo, S. Baroni, P. Giannozzi,
Electron. Struct. 1, 015009 (2019)



Functionals for weak (vdW) interactions

None of the above-mentioned functionals
properly accounts for van der Waals (or
“dispersive”) forces. No functional based
on the local charge/gradients/kinetic energy
and/or exact exchange can contain vdW
interactions, whose nature is nonlocal

Possible solutions include:

• Ignore van der Waals interactions altogether. Sometimes not possible, though

• Add them as a semi-empirical correction: very cheap, not very elegant, but often
good enough for practical purposes

• As above, with parameters derived from first principles

• Introduce a truly non-local functional: more elegant and more computationally
demanding, but still feasible



Semi-empirical van der Waals interactions

• DFT+D (Grimme): the vdW energy term is added to plain GGA as a semi-empirical
correction,

EDFT+D = EDFT + EvdW , EvdW = −s6
2

∑
i6=j

Cij6
R6
ij

fdamp(Rij)

where s6 is a global scaling factor depending upon the specific GGA;

Cij6 =

√
C

(i)
6 C

(j)
6 where C

(i)
6 are dispersion coefficients for the i−th atom;

a damping function

fdamp(R) =
1

1 + e−d(R/Rr−1)

prevent singularities for R → 0. Parameters are fitted to experimental or accurate
theoretical data. Very cheap and simple, but hardly a first-principle approach.

• DFT-D3: a refined model with more parameters and more interaction terms

quantum ESPRESSO implements both Grimme’s DFT-D2 and DFT-D3.



Less-empirical van der Waals interactions

• Tkatchenko-Scheffler: the C6 coefficients are computed from first principles, that
is, from the charge density. Recent versions of quantum ESPRESSO implement
this approach (not yet available for Ultrasoft PP and PAW).

• XDM (exchange-dipole model) is another way to obtain interatomic coefficients
for the vdW interactions. Available in quantum ESPRESSO, works only for
Ultrasoft PP and PAW.



Nonlocal vdW functionals

Nonlocal functionals account for van der Waals (dispersive) forces:

Enl =
1

2

∫
n(r)Φ(r, r′)n(r′)drdr′, Φ(r, r′) ≡ Φ(n(r),∇n(r), n(r′),∇n(r′), |r−r′|)

Can be computed with a reasonable computational overhead (Soler’s technique)
yielding generally good results, but often overestimating binding.

quantum ESPRESSO implements several flavors of such functional, notably:
vdW-DF (Dion et al., Thonhauser et al.), vdW-DF2 (Lee et al.),
revised VV10 (Sabatini et al., Vydrov and van Voorhis)
For practical usage, the kernel Φ should be computed and stored in a file.

• vdW-DF, vdW-DF2: run auxiliary code generate vdW kernel table.x, store file
vdW kernel table in the directory where pseudopotentials (PP) are read from;

• rVV10: run auxiliary code generate rVV10 kernel table.x, store file
rVV10 kernel table in the same directory as above.

In future versions the pre-computation of the kernel table will disappear


