o September 15—-20, 2019
QUANTUMESPRESSD Ljubljana, Slovenia

Summer School on Advanced Materials and Molecular Modelling

Chasing saddle points:
the NEB method

Q%Q Anton Kokalj

() (O  Department of Physical and Organic Chemistry
O JozZef Stefan Institute

(based on slides from previous QE schools + some new slides)



Chemical reaction oo

~ bond-breaking and bond-making - activated process
(there Is an energy batrrier)
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Heterogeneous catalysis
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Elementary activated reaction step OO

~ potential energy surface (PES) is highly multidimensional
(except for trivial examples)

projection to 1D along
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Reaction coordinate

5% | IS = initial state final state
S TS = transition state
local minimum FS = final state

saddle points are unstable configurations and their location is a difficult talk



Elementary activated reaction step OO

~ potential energy surface (PES) is highly multidimensional
(except for trivial examples)
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Rare Events

saddle point

E,>> KgT

Energy

reactantz

products

reaction coordinate

The characteristic time scale of this transition process is:

=)
~ KpT
tjump ~ lyip - €°B

Van't-Hoff - Arrhenius (1890)

(Remark: | often use E* instead of E4 for activation energy)



Rare Events

E 45
~ KpT
tjump ~ tyip - €"B

tip ~ 1071 sy Ey~0.75eV; T =300 K= tjymp~1s

Assuming a time-step of one fempto-second, 10'° time steps of MD would be necessary
to have a reasonable probability to observe ONE transition.

Nevertheless when the appropriate fluctuation occurs the process is extremely fast (a
few fempto-seconds).

What is macroscopically perceived as a slow process is instead a rare event.



Rare Events
an alternative approach

saddle point

E, >> KgT

Energy

reactants

products

reaction coordinate

The transition probability can be estimated using equilibrium statistical mechanics.
Once the saddle point has been located we can use harmonic Transition State Theory

(hTST) to calculate the rate constants:
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saddle points in multidimensional
systems: the Mueller PES
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systems: the Mueller PES

Mueller Potential Energy Surface -
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saddle points in multidimensional =

systems: the Mueller PES
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. intermediate state

] VV(z(s)) —7(s) (1(s)|VV (z(s))) =0

] The path characterized by the
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“highest” transition probability,
at zero temperature, is the
Minimum Energy Path.

MEP: the components of the force
orthogonal to the path are zero.
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systems: the Mueller PES

saddle points in multidimensional =
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systems: the Mueller PES
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The MEP crosses the
saddle points.




/— sbraccia@princeton.edu N
how to locate the MEP DEMOCRITRR

1) Path discretisation s — 1-:0S
( "chain of images” ) : :B( 3) sz
T; _
T(s) — 7= el

2) Orthogonal forces : F(x;) = —[VV(z;) — 73 (1;|VV(2;))]

3) MEP condition : |F(z;) .|| =0

4) path dynamics
( steepest-descent ) : ﬂf:;Cle — fﬁf + A F(i‘f)L
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The path dynamics does not preserve the inter-image distance
(path's parametrisation):
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The path dynamics does not preserve the inter-image distance
(path's parametrisation):

L
i ‘ A
Consequences: L ?AI Az
» »
1) Many images are required to L L L
represent the path.
L' =VI2+ Azx?

2) The images can eventually slide
down to the two minima. I — L( 1482 1) ~ 182

Possible solutions :

1) NEB: the images are connected by springs. <—— this talk

2) STRING: images are kept equispaced using Lagrange constraints.




Nudged Elastic Band method
Path is discretized into images
Images are inter-connected by springs (these keep images “equidistant”)
Each image feels a true force and a force due to springs
Spring forces are projected along the path and true forces orthogonal to the path
F(z;) = = (VV(2) = m(m|VV (%))  — 7lml| V(i — 2:)?)

Projections are defined by the path’s tangent: the tangent plays a crucial role !




NEB on the Mueller PES
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NEB vs constrained minimizations
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Constrained minimization is completely wrong in this case.



Specifying intermediate images
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Climbing image NEB




NEB code and its input file

| BEGIN PATH INPUT
| §PATH

1

1

/
1
1 END_PATH INPUT )

BEGIN ENGINE_ INPUT
! pw.x specific namelists and cards I
&CONTROL |
/ = - |
| GSYSTEM pwW.X specification
/ I
:&ELECTRONS |
/
| CELL_PARAMETERS |
...insert... |
ATOMIC SPECIES |
I
I

...1lnsert...
| K POINTS
| ...1lnsert...

| FIRST IMAGE
| ATOMIC_POSITIONS

|

|

|

| e - : |

| INTERMEDIATE_IMAGE spec|ﬁcat|on |
| ATOMIC_POSITIONS .

. of images !

| LAST IMAGE l

| ATOMIC POSITIONS |

| C |

I |

END” ENGINE. IRPUT
END

The QE program associated with the NEB
method is neb. x.

For detailed description of the input file,
see INPUT_NEB.html.



NEB code and its input file
The NEB input is specified via &PATH namelist. Important variables:

e num_of_images — number of images

e CI_scheme — do we want climbing-image NEB or not, possibilities:

— ’no-CI’ — climbing image is not used

— 2auto’ — climbing-image is used; the Cl image is automatically the image with
the highest energy

— ’mannual’ — climbing-image is (or climbing-images are) manually specified via
CLIMBING_IMAGES card

e opt_scheme — type of optimization scheme (’broyden’ = quasi-Newton Broyden
method , *quick-min’ velocity Verlet type scheme)

e ds —time-step for CI_scheme = ’quick-min’ (or optimization step length for CI_scheme
= ’broyden’)

Question: how many images should | use?
Answer: |t depends, but usually inter-image distance in range of 1 to 2 Bohr should
be OK (it is printed in the output).



That’s all

Beware that NEB calculation is usually difficult to converge. Some experience is a
plus.



