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Chemical reaction

bond-breaking and bond-making → activated process
(there is an energy barrier)  

DE ≡ reaction energy → thermodynamics
E* ≡ activation energy→ kinetics
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Heterogeneous catalysis

Langmuir-Hinshelwood mechanism
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Elementary activated reaction step

potential energy surface (PES) is highly multidimensional
(except for trivial examples)

saddle points are unstable configurations and their location is a difficult talk
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Rare Events

The characteristic time scale of this transition process is:

tjump ≈ tvib · e
EA

KBT

Van’t-Hoff - Arrhenius (1890)

(Remark: I often use E∗ instead of EA for activation energy)



Rare Events

tjump ≈ tvib · e
EA

KBT

tvib ≈ 10−13 s; EA ≈ 0.75 eV; T = 300 K =⇒ tjump ≈ 1 s

Assuming a time-step of one fempto-second, 1015 time steps of MD would be necessary
to have a reasonable probability to observe ONE transition.

Nevertheless when the appropriate fluctuation occurs the process is extremely fast (a
few fempto-seconds).

What is macroscopically perceived as a slow process is instead a rare event.



Rare Events
an alternative approach

The transition probability can be estimated using equilibrium statistical mechanics.
Once the saddle point has been located we can use harmonic Transition State Theory
(hTST) to calculate the rate constants:

Kreactants−→products = A · e−
EA

KBT

A =
Π3N

i=1 ν
reactants
i

Π3N−1
i=1 νsaddle point
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The path characterized by the 
“highest” transition probability, 
at zero temperature, is the 
Minimum Energy Path.

MEP: the components of the force 
orthogonal to the path are zero.

normalised tangent
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systems: the Mueller PES
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The path characterized by the 
“highest” transition probability, 
at zero temperature, is the 
Minimum Energy Path.

MEP: the components of the force 
orthogonal to the path are zero.

saddle points in multidimensional 
systems: the Mueller PES

The MEP crosses the 
saddle points.
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3) MEP condition :

2) Orthogonal forces :

1) Path discretisation 
   ( “chain of images” ) :

4) path dynamics 
   ( steepest-descent ) :

how to locate the MEP
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sliding down

The path dynamics does not preserve the inter-image distance 
(path's parametrisation):
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The path dynamics does not preserve the inter-image distance 
(path's parametrisation):

Possible solutions :

1) NEB: the images are connected by springs.

2) STRING: images are kept equispaced using Lagrange constraints.

Consequences:

this talk

1) Many images are required to 
represent the path.

2) The images can eventually slide 
down to the two minima.

sliding down



Nudged Elastic Band method

• Path is discretized into images

• Images are inter-connected by springs (these keep images “equidistant”)

• Each image feels a true force and a force due to springs

• Spring forces are projected along the path and true forces orthogonal to the path

F (xi) = − (∇V (xi)− τi〈τi|∇V (xi)〉) − τi〈τi|∇Ki
2 (xi+1 − xi)2〉

• Projections are defined by the path’s tangent: the tangent plays a crucial role !



NEB on the Mueller PES



NEB vs constrained minimizations

Constrained minimization is completely wrong in this case.



Specifying intermediate images



Climbing image NEB



NEB code and its input file

The QE program associated with the NEB
method is neb.x.
For detailed description of the input file,
see INPUT NEB.html.



NEB code and its input file

The NEB input is specified via &PATH namelist. Important variables:

• num of images – number of images

• CI scheme – do we want climbing-image NEB or not, possibilities:

– ’no-CI’ – climbing image is not used
– ’auto’ – climbing-image is used; the CI image is automatically the image with

the highest energy
– ’mannual’ – climbing-image is (or climbing-images are) manually specified via
CLIMBING IMAGES card

• opt scheme – type of optimization scheme (’broyden’ = quasi-Newton Broyden
method , ’quick-min’ velocity Verlet type scheme)

• ds – time-step for CI scheme = ’quick-min’ (or optimization step length for CI scheme

= ’broyden’)

Question: how many images should I use?
Answer: It depends, but usually inter-image distance in range of 1 to 2 Bohr should
be OK (it is printed in the output).



That’s all

Beware that NEB calculation is usually difficult to converge. Some experience is a
plus.


