Equilibrium and ultrafast vibrational dynamics from first principles

Dino Novko

Institute of Physics, Zagreb

Part I

Ultrafast Raman spectroscopy of MgB₂ – equilibrium and out-ofequilibrium condition

Nonadiabatic effects

- well-known examples: graphene/graphite, GIC, carbon nanotubes, MgB₂
- Adiabatic (static) approx. electrons remain in the instantaneous ground state
- Nonadiabatic (dynamical) approx. – electrons "lag behind" the instantaneous ground state

S. Pisana et al., Nature Mater. 6, 198 2007

MgB₂ - Motivation

- B atoms arranged in hexagonal layered structure
- Superconductive state below T_c = 39 K
- Conventional or unconventional phonon-mediated superconductivity?
- → Exp. : $\lambda = 0.6$, T_c = 39 K Theory : $\lambda > 0.7$, T_c > 50 K
- Anharmonicity? Nonadiabatic superconductivity? ... ?

J. Nagamatsu et al., Nature 410, 63 2001)

MgB₂ - Motivation

- \rightarrow Strong EPC between $E_{2\alpha}$ mode and σ electrons
- Anomalous Raman spectrum for E_{2g} mode adiabatic and nonadiabatic theory fail
- Temperature dependence and large broadening of E_{2a} mode anharmonicity?

Phonon self-energy

- Understanding the relaxation processes of vibrating molecules on metal surfaces
- Phonon self-energy using many body perturbation theory
 - Phonon linewidth and frequency renormalization due to electron-phonon coupling

$$\gamma_{\mathbf{q}\lambda} = -2\mathrm{Im}\Pi_{\lambda}(\mathbf{q},\omega_{\mathbf{q}\lambda})$$

$$\omega^2 = \omega_{\mathbf{q}\lambda}^2 + 2\omega_{\mathbf{q}\lambda} \mathrm{Re}\Pi_\lambda(\mathbf{q},\omega)$$

$$\Pi_{\lambda}(\omega) = \Pi_{\lambda}^{\text{intra}}(\omega) + \Pi_{\lambda}^{\text{inter}}(\omega)$$

Phonon self-energy

- Understanding the relaxation processes of vibrating molecules on metal surfaces
- Phonon self-energy using many body perturbation theory
 - \rightarrow Phonon linewidth and frequency renormalization due to electron-phonon coupling
- Dynamical matrix

$$\mathcal{D}(\omega) = \sum_{\mu\mu'\mathbf{k}} \frac{(f_{\mu\mathbf{k}} - f_{\mu'\mathbf{k}})d^*_{\mu\mu',\nu}(\mathbf{k}, 0, \omega)d^b_{\mu\mu',\nu}(\mathbf{k}, 0)}{\omega + i\eta + \varepsilon_{\mu\mathbf{k}} - \varepsilon_{\mu'\mathbf{k}}} + \int d\mathbf{r}n(\mathbf{r})\Delta^2 V_{\text{ion}}(\mathbf{r})$$
Phonon self-energy Bare (ionic) contribution

 \rightarrow Adiabatic contribution:

$$\omega_{\rm A}^2 = \mathcal{D}(0)/M$$

Electron-hole pair scattering on phonons

 \rightarrow Eliashberg function – λ = 0.6

Electron-hole pair
 lifetime and energy
 renormalization effects
 – γ_{ep}(ω) and ωλ_{ep}(ω)

$$\pi_{\nu}^{\text{intra}}(\omega) = \sum_{\mu \mathbf{k}} \left| g_{\nu}^{\mu\mu}(\mathbf{k}, 0) \right|^{2} \left[-\frac{\partial f(\varepsilon_{\mu \mathbf{k}})}{\partial \varepsilon_{\mu \mathbf{k}}} \right]$$
$$\times \frac{\omega}{\omega [1 + \lambda_{n}(\omega)] + i/\tau_{n}(\omega)}.$$

D. Novko, PRB **98**, 041112(R) (2018)

Frequency and linewidth of E_{2g} mode

- Phonon spectral function of the E_{2g} mode
- Strong temperature dependence of phonon frequency and linewidth
- Good agreement with the Raman measurements

[1] Yu. S. Ponosov and S. V. Streltsov PRB **96**, 214503 (2017)

[2] M. d'Astuto et al., PRB 75, 174508 (2007)

[3] P. M. Rafailov, M.Dworzak, and C. Thomsen, Solid State Commun. **122** 455 (2002)

Transient response - Motivation

- Transient reflectivity measurements – hot E_{2g} phonon scenario
- In analogy with the hot G phonon in graphene

b

2.6 mW

1.2 mV

0.7 mW

0.2 mW

0 mW

-1620

1580

Raman shift (1/cm)

1620

D.-H. Chae et al., Nano Lett., 10, 466 (2010)

1540

-1540

-1580

Raman shift (1/cm)

Hot phonons in MgB₂

- EPC strength λ along symmetry points (size of black circles)
- Total λ = 0.6 good agreement with the experiments
- Hot phonons: E_{2g}
 modes around Γ and along Γ-A path of 1BZ

 $\rightarrow \lambda_{hot} = 0.32$

Exp: purple and red points A.Q.R. Baron *et al.*, PRL **92**, 197004 (2004) A. Shukla *et al.*, PRL **90**, 095506 (2003)

Pure anisotropy of the EPC - different hot phonon scenario than in graphene-based systems and semiconductors (reduced phase space)

Transient response

Transient response

Part II

Breakdown of adiabaticity in doped single-layer transition metal dichalcogenides

Motivation

 \rightarrow multiple valleys in both valence and conduction bands

doping-induced Lifshitz transitions

PBE xc functional fails to reproduce the correct band structure of TMDs – band gap + topology of valleys

importance of non-local electron-electron interaction – determines the onset of Lifshitz transition

> PBE with strain in order to get the **right topology of valleys**

 \rightarrow Frequency shifts of A₁₀ and E₂₀ phonon modes as a function doping

 strong NA renormalization of frequencies when both valleys are partially occupied/empty – Δω = 30 cm⁻¹

➔ 2 regimes:

(i) **adiabatic** region where only 1 valence/conduction band is slightly empty/filled

(ii) **nonadiabatic** region where 2 valleys intersect the Fermi energy

exp. : T. Sohier et al., Phys. Rev. X 9, 031019 (2019)

NA effects – comparison

Strength of the NA effects in comparison to other systems

System	Δω _{ph} /ω _{ph}	
TMDs FET	8%	2D
Graphene FET	3%	
Graphite Intercalation compounds (LiC ₆)	16%	
MgB ₂	46%	

Graphene : M. Lazzeri and F. Mauri, PRL 97 266407 (2006) GIC : A. M. Saitta et al., PRL 100 226401 (2008)

 \rightarrow Frequency shifts of A_{1q} and E_{2q} phonon modes as a function doping

Strong NA + strong e-h scattering (due to el-ph coupling) when both valleys are partially occupied/empty

$$\pi_{\nu}^{\text{intra}}(\omega) = \sum_{\mu \mathbf{k}} \left| g_{\nu}^{\mu\mu}(\mathbf{k}, 0) \right|^{2} \left[-\frac{\partial f(\varepsilon_{\mu \mathbf{k}})}{\partial \varepsilon_{\mu \mathbf{k}}} \right]$$
$$\times \frac{\omega}{\omega [1 + \lambda_{n}(\omega)] + i/\tau_{n}(\omega)}.$$

exp. : T. Sohier et al., Phys. Rev. X 9, 031019 (2019)

 \rightarrow Frequency shifts of A_{1a} and E_{2a} phonon modes as a function doping

Summary – the effect of nonadiabatic el-ph coupling

Raman spectra - summary

➔ 2 regimes:

(i) adiabatic regime – one valley crosses Fermi level

(ii) nonadiabatic regime – mutiple valleys cross Fermi level

→ el. bands under A_{1g} displacement:

(i) adiabatic regime – both A and NA approximations give same results

(ii) nonadiabatic regime – significantly different results for A and NA approximations

Conclusions

Theoretical description of equilibrium and ultrafast timeresolved vibrational spectroscopy (3TM + MBPT)

Part I

 \rightarrow Ultrafast Raman spectroscopy of the hot E_{2a} mode in MgB₂

Part II

➔ Breakdown of adiabaticity in single-layer doped TMDs

Collaborations:

MgB₂ dynamics

Emmanuele Cappelluti

Fabio Caruso

Claudia Draxl

Acknowledgment to:

THANK YOU FOR YOUR ATTENTION!