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Part I
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➔ Ultrafast Raman spectroscopy of MgB
2
 – equilibrium and out-of-

equilibrium condition
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Nonadiabatic effects
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➔ Nonadiabatic – dynamical 
effects

S. Pisana et al., Nature Mater. 6, 198 2007

➔ well-known examples: 
graphene/graphite, GIC, 
carbon nanotubes, MgB

2

➔ Adiabatic (static) approx. – 
electrons remain in the 
instantaneous ground state

➔ Nonadiabatic (dynamical) 
approx. – electrons “lag 
behind” the instantaneous 
ground state

Graphene and E
2g

 phonon



  

MgB
2
 - Motivation
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➔ B atoms arranged in 
hexagonal layered structure

➔ Superconductive state 
below T

C
 = 39 K

➔ Conventional or unconventional 
phonon-mediated superconductivity?

➔ Exp.    : λ = 0.6 , T
C
 = 39 K

Theory : λ > 0.7 , T
C
 > 50 K

➔ Anharmonicity? Nonadiabatic 
superconductivity? … ?

J. Nagamatsu et al., Nature 410, 63 2001)



  

MgB
2
 - Motivation
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➔ Strong EPC between E
2g

 mode and σ electrons

Strong 
EPC !

E
2g

 phonon mode

σ states

nonadiabatic

➔ Anomalous Raman spectrum for E
2g

 mode – 

adiabatic and nonadiabatic theory fail

➔ Temperature dependence and large broadening 
of E

2g
 mode – anharmonicity?

J. W. Quilty et al., PRL 88, 087001 (2002)

Small E
F 
!



  

Phonon self-energy
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●  Understanding the relaxation processes of vibrating molecules on metal surfaces

●  Phonon self-energy using many body perturbation theory

Frequency shift

Phonon 
linewidth

➔ Phonon linewidth and frequency renormalization due to electron-phonon coupling

screened el-ph 
vertex

bare el-ph 
vertex



  

Phonon self-energy
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●  Understanding the relaxation processes of vibrating molecules on metal surfaces

●  Phonon self-energy using many body perturbation theory

➔ Phonon linewidth and frequency renormalization due to electron-phonon coupling

●  Dynamical matrix

Phonon self-energy 
contribution

Bare (ionic) 
contribution

➔ Adiabatic contribution:



  

Electron-hole pair scattering on phonons
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➔ Electron-hole pair 
lifetime and energy 
renormalization effects 
– γ

ep
(ω) and ωλ

ep
(ω)

➔ Eliashberg function – λ = 0.6

D. Novko, PRB 98, 041112(R) (2018)

E. Cappelluti PRB 73, 140505(R) (2006)

Pure NA

NA with e-h pair scattering 

Pure NA e-h pair scattering on phonons



  

Frequency and linewidth of E
2g

 mode
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➔ Phonon spectral function 
of the E

2g
 mode

➔ Strong temperature 
dependence of phonon 
frequency and linewidth

➔ Good agreement with the 
Raman measurements

[1] Yu. S. Ponosov and S. V. Streltsov PRB 96, 
214503 (2017)

[2] M. d’Astuto et al., PRB 75, 174508 (2007)

[3] P. M. Rafailov, M.Dworzak, and C. Thomsen, 
Solid State Commun. 122 455 (2002)

A NA



  

Transient response - Motivation
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➔ In analogy with the 
hot G phonon in 
graphene

➔ Transient reflectivity 
measurements – hot 
E

2g
 phonon scenario

E. Baldini et al., PRL 119, 097002 (2017)

D.-H. Chae et al., Nano Lett., 10, 466 (2010)



  

Hot phonons in MgB
2
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➔ EPC strength λ along 
symmetry points (size 
of black circles)

➔ Total λ = 0.6 – good 
agreement with the 
experiments

➔ Hot phonons: E
2g

 

modes around Γ and 
along Γ-A path of 1BZ

➔ λ
hot

 = 0.32
A.Q.R. Baron et al., PRL 92, 197004 (2004)

A. Shukla et al., PRL 90, 095506 (2003)

Exp: purple and red points

➔ Pure anisotropy of the EPC - different hot phonon scenario than in graphene-based 
systems and semiconductors (reduced phase space)



  

Transient response
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➔ Three subsystems -  
electrons, hot E

2g
 

phonons, and 
remnant cold modes

 

Pump

➔ Three temperature 
model – electrons T

e
, 

hot phonons T
E2g

, and 

T
ph 



  

Transient response
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➔ Ultrafast Raman spectroscopy of MgB
2

➔ Frequency change – competition between redshift and 
blueshift 

Nonadiabatic contribution, 
dependent on T

E2g

Adiabatic contribution, 
dependent on T

e



  

Part II
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➔ Breakdown of adiabaticity in doped single-layer transition metal 
dichalcogenides



  

Motivation
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➔ Raman spectroscopy of single-layer TMD transistors

EXP.

Theory

➔Adiabatic DFT largely 
overestimates the experimental 
Raman shifts

A
1g

T. Sohier et al., Phys. Rev. X 9, 031019 (2019)



  

Electronic band structure

  Dino Novko

➔ multiple valleys in both valence and conduction bands

valence  bands
conduc tion ban ds



  

Electronic band structure
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➔ multiple valleys in both valence and conduction bands

MoS
2
 Fermi surface

e-/h+ doped system

➔ doping-induced Lifshitz transitions



  

Electronic band structure
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➔ PBE xc functional fails to reproduce the correct band structure of TMDs – 
band gap + topology of valleys

➔ importance of non-local electron-electron interaction – determines the 
onset of Lifshitz transition



  

Electronic band structure
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➔ PBE with strain in order to get the right  topology of valleys



  

Raman spectra
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➔ Frequency shifts of A
1g

 and E
2g

 phonon modes as a function doping

➔ strong NA renormalization of 
frequencies when both valleys 
are partially occupied/empty – 
Δω = 30 cm-1

exp. : T. Sohier et al., Phys. Rev. X 9, 031019 (2019)

➔ 2 regimes: 

(i) adiabatic region where only 1 
valence/conduction band is 
slightly empty/filled

(ii) nonadiabatic region where 2 
valleys intersect the Fermi energy



  

NA effects – comparison
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➔ Strength of the NA effects in comparison to other systems

       System         Δω
ph

/ω
ph

TMDs FET         8%

Graphene FET         3%

Graphite Intercalation 
compounds (LiC

6
)        16%

MgB
2        46%

Graphene : M. Lazzeri and F. Mauri, PRL 97 266407 (2006)

GIC : A. M. Saitta et al., PRL 100 226401 (2008)

2D

3D



  

Raman spectra
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➔ Frequency shifts of A
1g

 and E
2g

 phonon modes as a function doping

➔ Strong NA + strong e-h 
scattering (due to el-ph 
coupling) when both valleys are 
partially occupied/empty

exp. : T. Sohier et al., Phys. Rev. X 9, 031019 (2019)



  

Raman spectra
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➔ Frequency shifts of A
1g

 and E
2g

 phonon modes as a function doping

B. Chakraborty et al., PRB 85, 161403(R) (2012)

➔ FWHM(A
1g

) >> FWHM(E
2g

)

➔ strong e-h scattering due to el-
ph coupling – induces phonon 
broadening



  

Raman spectra
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➔ Summary – the effect of nonadiabatic el-ph coupling



  

Raman spectra - summary
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➔ 2 regimes:
  
 (i) adiabatic regime – one valley 
crosses Fermi level

 (ii) nonadiabatic regime – 
mutiple valleys cross Fermi level

➔ el. bands under A
1g

 

displacement:
  
 (i) adiabatic regime – both A 
and NA approximations give 
same results

 (ii) nonadiabatic regime – 
significantly different results for A 
and NA approximations



  

Conclusions
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➔ Theoretical description of equilibrium and ultrafast time-
resolved vibrational spectroscopy (3TM + MBPT )

Part I

Part II

➔ Ultrafast Raman spectroscopy of the hot E
2g

 mode in MgB
2

➔ Breakdown of adiabaticity in single-layer doped TMDs 



  

THANK YOU FOR YOUR ATTENTION!

MgB
2
 dynamics
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