A short introduction to physics and chemistry at crystalline surfaces

Željko Šljivančanin

Vinča Institute of Nuclear Sciences Belgrade, Serbia

outline

- surfaces: metals, semiconductors, oxides, 2D materials
- 1. catalysis
- 2. nanostructures at graphene

DFT and experiments in surface science

Common crystal structures

Common metallic crystal structures

Common metal surfaces

Common metal surfaces

hcp(0001)

fcc

FCC(111)

hcp(0001)

side

top

B A B

Defects at metal surfaces

stepped surface

terrace atom

Atoms with reduced coordination number

terrace atom

Atomic Simulation Environment (ASE): https://wiki.fysik.dtu.dk/ase

Slab model of surfaces

surface energy

$$\gamma = \frac{\mathrm{E(slab, N)} - \mathrm{N} \cdot \mathrm{E(bulk)}}{2\mathrm{A}}$$

clear correlation between surface energy and the number of broken NN bonds

work function

Catalysis

dissociative chemisorption

Catalysts

Technical conditions: $T \approx 400^{\circ}$ C, $p \approx 300$ bar promoted iron catalyst

BASE S6-10 catalyst [at %]

	Fe	к	AI	Са	ο	
Bulk composition Surface –	40.5	0.35	2.0	1.7	53.2	
unreduced	8.6	36.2	10.7	4.7	40.0	
reduced	11.0	27.0	17.0	4.0	41.0	
cat. active spot	30.1	29.0	6.7	1.0	33.2	

Ammonia synthesis – industrial catalyst

very complicated structure

O at Ru(0001)

G. Ertl, Angew. Chem. Int. Ed. 47, 3524 (2008).

>make a simple model

Gerhard Ertl, Nobel prize in Chemistry 2007

"for his studies of chemical processes on solid surfaces".

Catalysts: transition and noble metals

Theory of chemisorption

adatoms on transition-metal surfaces

Newns-Anderson model

Phys. Rev. 178, 1123 (1969).

d-band model

Hammer-Norskov (d-band) model

d-band center

 $\epsilon_d = \frac{\int \text{DOS}(\mathbf{E}) \mathbf{E} d\mathbf{E}}{\int \text{DOS}(\mathbf{E}) d\mathbf{E}}$

Understanding trends in reactivity based on a single parameter

use it only for similar adsorption geometries!

d-band model

reactivity of different metals H at metal surfaces

The "same" metal oxygen adatom on Pd monolayers

similar adsorption geometries!

d-band model

SH@Au(17 11 9) "on-top" geometry

structural defects – trends in reactivity

Defects at metal surfaces

DFT: O2 dissociation on stepped Pt(111) steps Ag-covered steps

 $n = n_0 e^{-E_a/kT}$

Atoms at steps billion times more reactive than terrace sites

terraces

Defects at metal surfaces

O₂ dissociation on Pt

Atoms at steps billion times more reactive than terrace sites

lead poisoning of catalysts

N₂ dissociation on Ru

Special sites (defects) control reactivity

Graphite and graphene

thickness of graphite left by a pencil writing on paper is ~20 nm 50 to 60 graphene layers

K. Novoselov and A. Geim, Nobel prize in Physics 2010

"for groundbreaking experiments regarding the two-dimensional material graphene."

Scanning tunneling microscopy (STM)

Ag(100)

2.5 пт х 2.5 пт на 160 К

Fe atoms on Cu

Hydrogen atoms on graphite

STM images

PRL 96, 156104 (2006)

two types of hydrogen structures

STM results

H adatom

DFT used to search for favorable configuration of H adatoms

Let's start wit TWO H atoms

unknown structures

H dimers

e.

ortho dimer

 $E_{\rm B} = 2.7 \, {\rm eV}$

DFT

experiment

para dimer

DFT can be use to simulate STM images and compare them with those obtained from STM imaging

DFT can be used to simulate STM images

experiment

Tersoff-Hamann scheme - local density of states n (r,E)

Hydrogen atoms on graphite

Temperature programmed desorption (TPD)

different desorption barriers

associative desorption

para dimer

NEB used to calculate barriers

direct process: $O \rightarrow H_2$ occurs at 470K

associative desorption

ortho dimer

direct process: $O \rightarrow H_2$ does not occur

associative desorption

ortho dimer

process: $O \rightarrow M \rightarrow P \rightarrow H_2$ occurs at 600K

DFT in surface science

- structural properties of surface
- adsorption geometries, nanostructures

- chemical reactions
- > DFT and STM, TPD, ...

