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Time-dependent Schrodinger equation

As In the static case, let us consider the Born-Oppenheimer approximation, which assumes that the
motion of electrons and nuclel can be separated.

The evolution of a non-relativistic interacting many-electron system is governed by the time-dependent
Schrodinger equation:

e Ua({rih 1) = A({xi},0) Wa{r}, 0
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The solution of the time-dependent Schrodinger equation for the many-electron system I1s even more
complex than the solution of the static (time-independent) Schrodinger equation!



From wavefunction to charge density

By analogy to the static case, instead of considering the electronic wavefunction of 3N+1 variables
one can consider the electronic charge density which 1s a function of only 4 variables:

TL(I',t) — N/\\I!el(r,rg,...,rN,t)|2dr2...drN
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By analogy to the static case, instead of considering the electronic wavefunction of 3N+1 variables
one can consider the electronic charge density which 1s a function of only 4 variables:

n(r,t) = N/\\Ifel(r,rg,...,rN,t)|2dr2...drN

After the great success of static density-functional theory in the description of the many-body systems,
Runge and Gross extended DFT to the time domain (i.e. TDDFT).

-. Runge and E.K.U Gross, “Density-functional theory for time-dependent systems’,
Phys. Rev. Lett. 52, 997 (1984).



From wavefunction to charge density

By analogy to the static case, instead of considering the electronic wavefunction of 3N+1 variables
one can consider the electronic charge density which 1s a function of only 4 variables:

n(r,t) = N/\\Ifel(r,rg,...,rN,t)Ierg...drN

After the great success of static density-functional theory in the description of the many-body systems,
Runge and Gross extended DFT to the time domain (i.e. TDDFT).

-. Runge and E.K.U Gross, “Density-functional theory for time-dependent systems’,
Phys. Rev. Lett. 52, 997 (1984).

DFT: one-to-one mapping between static charge density and static external potential (minimization
principle of the total energy).

TDDFT: straightforward extension of this idea to the time-dependent domain i1s not possible, because
the total energy 1s no longer a conserved quantity.




Runge-Gross T heorem |

For any system of interacting particles in an external time-dependent potential Vg (r,t),
which can be expanded in Taylor series with respect to time, and given an wnitial state

U(r,tg) = Wo(r), there is a one-to-one correspondence between Vg (r,t) and the time-

dependent density n(r,t), apart from a trivial function of time.
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U(r,tg) = Yo(r), there is a one-to-one correspondence between Vez(r,t) and the time-

dependent density n(r,t), apart from a trivial function of time.

Therefore, all observables can be regarded as functionals of the time-dependent charge density.

In contrast to static DFT, in TDDFT we need to set an initial condition, since the system follows an
evolution In time and we need to know the starting point.
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For any system of interacting particles in an external time-dependent potential Veze(r, 1),
which can be expanded in Taylor series with respect to time, and given an wnitial state

U(r,tg) = Wol(r), there is a one-to-one correspondence between Ve (r,t) and the time-
dependent density n(r,t), apart from a trivial function of time.

Therefore, all observables can be regarded as functionals of the time-dependent charge density.

In contrast to static DFT, in TDDFT we need to set an initial condition, since the system follows an
evolution In time and we need to know the starting point.

In TDDFT the variational principle cannot be formulated in terms of the energy. Alternatively, there

exists a quantity analogous to the energy - the quantum-mechanical action functional - which i1s dened
in Theorem II.




Runge-Gross T heorem |

A quantum-mechanical action functional

Al = [ de (we)ing; — HO0()

becomes stationary at the exact time-dependent density ng(r,t) which corresponds to the
external potential V. (r,t) given the initial state Wo(r) at ty:

0A[n]
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A quantum-mechanical action functional

Aln| = / ldt (W(z‘)\zh; H(t)|W(t)).

to

becomes stationary at the eract time-dependent density ng(r,t) which corresponds to the
external potential V.. (r,t) given the initial state Wo(r) at ty:

60A|n]
on(r,t)

= 0.

no

Theorem |l means that i1t 1s possible to solve the time-dependent problem by searching for the
stationary point of the action A .

In contrast to the energy In the static case, the stationary point Is not necessarily a minimum.

The value of the action itself does not provide any relevant additional information, since for the
true density A[ng| =0 .



Quantum-mechanical action functional

In TDDFT the action functional A can be decomposed on the components, much in the same way
as 1t 1s done for the energy functional of DF T

Aln| =To\n| + Aun| + Axc[n / dt /dr et r,t)
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Quantum-mechanical action functional

In TDDFT the action functional A can be decomposed on the components, much in the same way
as 1t 1s done for the energy functional of DF

Aln] = To[n] + Auln] + Al / it /dr (e (e t)
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In order to approximate the unknown action functional A, Gross and Kohn have introduced an
auxiliary fictitious system of non-interacting particles that satisfy the time-dependent Kohn-Sham

equations.

= K.U Gross and W. Kohn, “Local density-functional theory of frequency-dependent linear response’,
Phys. Rev. Lett. 55, 2850 (1985).




Time-dependent Kohn-Sham equations
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Adiabatic approximation

As In the static DF T, the time-dependent Kohn-Sham equations require a suitable approximation for
the exchange-correlation (xc) potential in order to be applied in practice.

n the time-dependent case, the xc potential 1s time-dependent and depends on density n(r, t) at all
nast times, and thus 1t I1s absolutely nontrivial and even more dicult than in the static case to find an
expression for It.




Adiabatic approximation

As In the static DF T, the time-dependent Kohn-Sham equations require a suitable approximation for
the exchange-correlation (xc) potential in order to be applied in practice.

n the time-dependent case, the xc potential 1s time-dependent and depends on density n(r, t) at all
nast times, and thus 1t I1s absolutely nontrivial and even more dicult than in the static case to find an
expression for It.

The most popular choice is the adiabatic local-density approximation (ALDA) which is obtained by
evaluating the standard LDA potential with the time-dependent density n(r,t):

Vie 2l (r,t) = V% (n(x, 1))

Limitations of ALDA: optical properties of solids, double excitations, charge-transfer excitations, ...
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Linear vs nonlinear response regimes

TDDFT

"

Linear-response

regime

External perturbation 1s weak

(solve TDDFT equations in
the time or frequency domain)

S

Nonlinear-response
regime

External perturbation i1s strong

(solve TDDFT equations
in the time domain)
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|_inear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential 1s weak, and that it can be written as:

Veat (1, 1) = Vogy(r) + Vi (r, 1)
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Let us assume that the time-dependent external potential 1s weak, and that it can be written as:

Veat (1, 1) = Vogy(r) + Vi (r, 1)

Therefore, the density n(r, t) can be expanded in Taylor series with respect to the perturbation:

U /
n(rv t) — N (I‘) TN (I‘, t) +%) T Susceptibility
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Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential 1s weak, and that it can be written as:

V;/’il?t(r? t) — V:eg:t(r) T e/:ct<r7 t)

Therefore, the density n(r, t) can be expanded in Taylor series with respect to the perturbation:

U /
n(ra t) — N (I‘) TN (I‘, t) _I_%) T Susceptibility

n'(r,t) :/ dt’/dr’x(r, v, t—t)V. (' t)

Time-dependent density functional perturbation theory (TDDFPT) is TDDFT in conjunction with

perturbation theory. If we keep only the first-order terms in the Taylor expansion, then this is linear-
response T DDFT.
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Different ways how to compute the susceptibility from TDDFP T

TDDFPT

Dyson Sternheimer
method method

Liouville-Lanczos Casida-Davidson
method method
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Different ways how to compute the susceptibility from TDDFPT

TDDFPT

Dyson

method
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Dyson method

, , on(r,t)
Charge-density susceptibility: ~ x(r,r',t —1') = NACRD
exTt\ ™ Vet (v/,t")=V7, . (r)




Dyson method

on(r,

t)

Charge-density susceptibility: x(r, r',t — t/) —

| et us use the chain rule for functional derivatives:
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Dyson method

on(r,t
Charge-density susceptibility:  X(T, 't —1t') = SV ( / )t’
eact(rv ) Vet (' )=V . (¢r/)

et us use the chain rule for functional derivatives:

> on(r,t) oVig(x" t")
ot —t :/ dt’/dr” ’ — |
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OVie(r, 1)
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Dyson method

on(r, t)

Charge-density susceptibility: X(r,r' t—t) =

et us use the chain rule for functional derivatives:

5‘/65515 (I' t/) V.

/ / - y o on(r,t)  oVig(r" 17)
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Dyson method

on(r, t)

Charge-density susceptibility: X(r,x' t —t') =

et us use the chain rule for functional derivatives:
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X(I‘, | G ) /_OO / r 5VKS(r//7 t”) 5‘/8xt(r/7 t/)

0Vks(r,t) - 0Vie(r, 1)

6%33?5 I' t/ B | 5‘/ezct(r,7t,)
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Dyson method

on(r,t)
OVt (x/, 1)

Charge-density susceptibility: X(r,x' t —t') =

Vea:t (I",t/) ea:t (I'/)

et us use the chain rule for functional derivatives:

/ / - y o on(r,t)  oVig(r" 17)
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Dyson method

After gathering all terms together, and performing a

—ourler trans

one obtains the final integral equation, which 1s callec

‘ormation to the frequency domain,

the Dyson-l

ke screening equation:

G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
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Dyson method

After gathering all terms together, and performing a Fourier transformation to the frequency domain,
one obtains the final integral equation, which i1s called the Dyson-like screening equation:

S, - f.)@?(r)vg*(r)s@?(r’)w?*(r’)

Independent-particle polarizability: Y (r, v, w) = 7 ci— )+
W —\& —¢&j (|

2,J

Let us rewrite the Dyson-like equation in the reciprocal space. To this end, let us make use of the Fourier
transformation from real space to reciprocal space'

(e x,w) Z S @O (quw) e @ e
q GG/

G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002). 16



Dyson method

The Dyson-like matrix equation in the reciprocal space:

ve(q) = 4me?/|q + G| is the Fourier transform of the Coulomb potential

éCG/(q, w) s the Fourier transform of the exchange-correlation kernel
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Dyson method

The Dyson-like matrix equation in the reciprocal space:

ve(q) = 4me?/|q + G|* is the Fourier transform of the Coulomb potential

ECG/(q, w) s the Fourier transform of the exchange-correlation kernel
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Dyson method

The Dyson-like matrix equation in the reciprocal space:

ve(q) = 4me?/|q + G|* is the Fourier transform of the Coulomb potential

(X;CG/(q, w) s the Fourier transform of the exchange-correlation kernel

: - l BZ
XG,G’(qa w) Bl 0O Z Z

k n,n/

fn,k _ fn’,k—l—q

hw 4 €k — Enr k

q 11

<¢n k|€—z [t G)r ‘Qpn’ k—l—q> <90n’ k—|—q|

o i(q+G’)-r’

|902,k>
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Dyson method

The Dyson-like matrix equation in the reciprocal space:

ve(q) = 4me?/|q + G| is the Fourier transform of the Coulomb potential

(X;CG/(q, w) s the Fourier transform of the exchange-correlation kernel

1 fnak o fn,ak—l_ —’L ).y’
Xeolaw) = =) ) = 7 (sl €T TG 1) (P st al €T E T i 1)

. . 0
& Sum over numerous empty states n’ in the calculation of XG.G’
& Multiplication and inversion of large matrices

| 0
& The matrices XG,G’ and X@G,G’ must be computed for every value of frequency -



Different ways how to compute the susceptibility from TDDFPT

TDDFPT

Sternheimer

method
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Sternheimer method

The time-dependent Kohn-Sham equations:

th agpva(:j t) — HKS(r7 t) P (I’, t)

The Kohn-Sham Hamiltonian:
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Sternheimer method

The time-dependent Kohn-Sham equations:

L 0p,(r, 1)
7 _
o

The Kohn-Sham Hamiltonian:
h? 5
= Vo 4+ Vou(r,t) + Vigge(r, t
- 2Mo t( ) H ( )

19



Sternheimer method

The time-dependent Kohn-Sham equations:

L 0p,(r, 1)
7 _
o

The Kohn-Sham Hamiltonian:
h? 5
= Vo4 Vol t) + Vigge(r, t
- 2Mo t( ) H ( )

Vvea?t(ra t) — ‘/e(a)r:t(r) T ‘/e/mt(rv t>
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Sternheimer method

The time-dependent Kohn-Sham equations:

0, (r,1)
ot

1h

The Kohn-Sham Hamiltonian:
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Sternheimer method

The time-dependent Kohn-Sham equations:

L 0p,(r, 1)
7 _
o

The Kohn-Sham Hamiltonian:

19



Sternheimer method

T herefore, we can rewrite the Kohn-Sham Hamiltonian as:

Hys(r,t) = H(r) + V'(r, )

20



Sternheimer method

T herefore, we can rewrite the Kohn-Sham Hamiltonian as:

Hggs(r,t) =- + V'(r,t)
h2
) = 5 2 0) + Vi)

V’(I‘, t) — Ve/:z:t<r7 t) T VI;xc(rv t)
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Sternheimer method

T herefore, we can rewrite the Kohn-Sham Hamiltonian as:

HKS(I', t) :-—l— V/(I', t)

hQ
B - v v+ Vi

V’(I‘, t) — szt(ra t) T VI;XC(I',t

he time-dependent Kohn-Sham wavefunctions are: @, (r, t)

)

— €

—ieyt/h [

oy

(r)

/

+ @,

(r, 1))
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Sternheimer method

T herefore, we can rewrite the Kohn-Sham Hamiltonian as:

Hgs(r,t) :-—I— V'(r,t)
hz 2 0 0
) = v 4 () 4 Vi)

V/(I', t) — Ve/mt (I‘, t) T VI;XC(I', t)

he time-dependent Kohn-Sham wavefunctions are: @, (r,t) = e "=/" oo(r) + ¢, (r,t)]

This allows us to write the time-dependent linear-response Kohn-Sham equations (Sternheimer egs.) as:

20



Sternheimer method

By performing a Fourier transformation from the time domain to the frequency domain we obtain:

21



Sternheimer method

By performing a Fourier transformation from the time domain to the frequency domain we obtain:
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By performing a Fourier transformation from the time domain to the frequency domain we obtain:
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Sternheimer method

By performing a Fourier transformation from the time domain to the frequency domain we obtain:
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Sternheimer method

By performing a Fourier transformation from the time domain to the frequency domain we obtain:

i " 2 N , SELF-CONSISTENT
/ - fxe(r,r’)| RO (xr",w)dr PROBLEM

¥

Ale,w) =2) [2(r.w)e*(r) + &, (r, —w)po(r)] Solved iteratively
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Sternheimer method

By performing a Fourier transformation from the time domain to the frequency domain we obtain:

SELF-CONSISTENT
PROBLEM

¥

Solved iteratively

Projector on
empty states:

21



Sternheimer method

By performing a Fourier transformation from the time domain to the frequency domain we obtain:

Projector on
empty states:

. D e \soc 0]
P.=1-P

- - g2 N , SELF-CONSISTENT
Virxe (T, w) = / r—r F fxe(r, 1) | (7, w) dr PROBLEM
Ale,w) =2) [2(r.w)e*(r) + &, (r, —w)po(r)] Solved iteratively

@ No need in empty states (thanks to the projector P, )

& The Sternheimer equations must be solved for every value of frequency
2



Different ways how to compute the susceptibility from TDDFPT

TDDFPT

Liouville-Lanczos

method
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L iouville-Lanczos method

The quantum Liouville equation describes the time evolution of the charge density matrix operator:

%0 _ Brest), )]

1h

B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008).
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L iouville-Lanczos method

The quantum Liouville equation describes the time evolution of the charge density matrix operator:

P s (1), ()

In the coordinate representation the charge density matrix reads:

p(r,r';t) —22% ) (', 1)

B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008).
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L iouville-Lanczos method

The quantum Liouville equation describes the time evolution of the charge density matrix operator:

P s (1), ()

In the coordinate representation the charge density matrix reads:

PET3t) = 23 e, ) 441
Using the linear response theory, we can rewrite the quantum Liouville equation to first order as:

2P 0,5/ (0)) + (Ve 0). 1) + VLt (). 5

pl(r,r'; 1) —ZZ ol (r (') + @, (r', 1)) (r)]

B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008).
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L iouville-Lanczos method

Let use rewrite the linear-response quantum Liouville equation by defining the Liouville superoperator:
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L iouville-Lanczos method

Let use rewrite the linear-response quantum Liouville equation by defining the Liouville superoperator:
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L iouville-Lanczos method

How to solve the linear-response quantum Liouville equation in practice? »

O.B. Malcioglu, R. Gebauer, D. Rocca, and S. Baroni, Comput. Phys. Comun. 182, 1744 (2011).
X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014).

| anczos recursion
algorithm

25



L iouville-Lanczos method

How to solve the linear-response quantum Liouville equation in practice? »

We define and use the standard batch representation:

1

) =3 B + -] p) =

| anczos recursion
algorithm

q = 1qv(r); P = {pu(r)}

O.B. Malcioglu, R. Gebauer, D. Rocca, and S. Baroni, Comput. Phys. Comun. 182, 1744 (2011).
X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014).
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L iouville-Lanczos method

| anczos recursion

How to solve the linear-response quantum Liouville equation in practice? »

algorithm
We define and use the standard batch representation:
1 o 1 .
0(r) = 5 [P, (r,w) + & (r, —w)] po(r) = 5 [Py(r,w) = @7 (r, —w)]

q = {qu(r)} P = {pu(r)}

O.B. Malcioglu, R. Gebauer, D. Rocca, and S. Baroni, Comput. Phys. Comun. 182, 1744 (2011).
X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014). 25



L iouville-Lanczos method

| anczos recursion

How to solve the linear-response quantum Liouville equation in practice? »

algorithm
We define and use the standard batch representation:
1 o 1 .
0(r) = 5 [P, (r,w) + & (r, —w)] po(r) = 5 [Py(r,w) = @7 (r, —w)]

q=1q(r)}

Dogu(r) = (A —2,) qu(x)  [K-qur)=2P) / — o+ fee(r, )| @0(0) 907 (1) qur (v')

O.B. Malcioglu, R. Gebauer, D. Rocca, and S. Baroni, Comput. Phys. Comun. 182, 1744 (2011).
X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014). 25



L iouville-Lanczos method

| anczos recursion
algorithm
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L iouville-Lanczos method

) - ( {P. Ve’xt(r(,)w) o) (r)} )

| anczos recursion
algorithm
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L iouville-Lanczos method

| anczos recursion
algorithm

=)

| anczos recursion chain:

U, = ( é]}:} ) » Oiv1 Vig1 = EV@ — % Vi1
Yie1 U1 = Lr U, —6; Ui

) - ( {P. Ve’xt(r?w) o0 (r)} )
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L iouville-Lanczos method

| anczos recursion
algorithm

=)

| anczos recursion chain:

U, = ( é]:% ) » Oiv1 Vig1 = ZEV@' — Vi Vi1
Yit1 Uip1 = L7 U, —6; Ui

¥

ridiagonal matrix:

) - ( {P. Ve’xt(r?w) o0 (r)} )

G 0 3 0 0
™ =10 8 0 . 0
. 0 TN
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L iouville-Lanczos method

) - ( {P. Ve;xr?w) O(r)}

)

| anczos recursion
algorithm

=)

| anczos recursion chain:

V. = ( qé ) U, = ( é]:f) ) » Oiv1 Vig1 = ZEV@' — i Vi1
Py Py

Susceptibility 1Is computed In a postprocessing step:

xa@) = (] (Rl = V) e

Vit1 Ui = [:T U, - 6;U;

¥

ridiagonal matrix:

G 0 3 0 0
TV=1 0 B, 0 . 0
. 0 TN
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L iouville-Lanczos method

) - ( {P. Ve;xr?w) O(r)} )

Susceptibility 1Is computed In a postprocessing step:

xa(w) = (¢ (ﬁwa — TN>_1 €7

Y = {{(PeA@ (), 0)[ V) }

| anczos recursion
algorithm

=)

| anczos recursion chain:

» Oiv1 Vig1 = L Vi—7Via
Yit1 Uip1 = LU, — 0i Uiy

¥

ridiagonal matrix:

G 0 v 0 O
TV=1 0 B, 0 . 0
0 TN

20



L iouville-Lanczos method

| anczos recursion
algorithm

=)

& No need in empty states | anczos recursion chain:

_ o PN .
& The tridiagonal matrix must be computed Bi1 Vi1 =LV, —v V4

only once (independently of frequency) )
Yit1 Ui = L' U; — 5, U,y

) - ( {P. Ve’xt(r?w) o0 (r)} )

& The postprocessing is inexpensive; extrapolation
of Lanczos coefficients allows to speed up the '

convergence

o _ | ridiagonal matrix:
Susceptibility 1Is computed In a postprocessing step:

—1 0O ~» 0 ... O

XA(W) — <<N‘ (hwa — TN> : e‘{\r> A B 0 ~v3 0 O
=10 B 0 . 0

N = {((P.Agg(r),0)|Vi)} 0 -




Different ways how to compute the susceptibility from TDDFPT

TDDFPT

Casida-Davidson
method

27



Casida-Davidson method

Let us recall the equations from the Sternheimer method:

~

(H° — &, — hw)@,(r,w) + PV (r,w)p,(r) = =PV,

e

(HO — &y T hw)gb@*(r, _w) T pcVI/{xc(rvw)QOg(r) — _pc

X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014).

ext

V/

(r,w)@,(r),

ot (T, W)y (r)
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Casida-Davidson method

Let us recall the equations from the Sternheimer method:

(HO — Cv T M)@;(I‘W) pcV];XC(I"w)gQS(I‘) — _pcv ) (I‘)? 0
(HO — &y T h[,d)@,/v*(r. —O.)) T pcvlffxc(r? UJ)QDQ(I’) = —F, / ) v(r) 0

Now let us rewrite these equations in the matrix form (Casida equations), and determine the eigenvalues
of the matrix on the left-hand side (Liouvillian) using the Davidson-like diagonalization algorithm:

(o2 0 )(5)==(5)

The eigenvalues of the Liouvillian correspond to the poles of the susceptibility.

& This is the method of choise if one is interested in a few lowest-energy excitations in the system.

X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014). 28
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o Basics of TDDFT: Two Runge-Gross theorems

o "Linear-response IDDFIT" or “IDDFPT”

o Dyson method

o Sternheimer method

o Liouville-Lanczos methoa
o Casida-Davidson method

o Various spectroscopies from TDDFPT

o Optical absorption
o tlectron energy loss
o Inelastic neutron scattering
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Various spectroscopies from TDDFPT

TDDFPT

Optical absorption Electron energy loss

spectroscopy spectroscopy

Inelastic neutron scattering
spectroscopy
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Various spectroscopies from TDDFPT

TDDFPT

_—

Optical absorption

spectroscopy
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Optical absorption in molecules

Let us consider an external perturbation which 1s a homogeneous electric field:

V' (r,w) = —eE(W) - r

ext
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Optical absorption iIn molecules

Let us consider an external perturbation which 1s a homogeneous electric field:

V! (r.w)=—eEW)- r

ext

This external perturbation linearly induces a dipole:

d(w) = Tr [¢ p'(w)] = (F|(hw — L) - [V (w),

s O
hoo _\P‘ <
AVAVASSIR =

32



Optical absorption in molecules

Let us consider an external perturbation which is a homogeneous electric field: -«
. W o Y
/
Vvext(raw) — —eE(w) I N\ 4

This external perturbation linearly induces a dipole:

at
N\

d(w) = Tr [t §'(w)] = (¢[(hw — L)~ - [V (@), 5°])

ext

We can rewrite the expression above by defining the dynamical polarizability tensor of the dipole:

32



Optical absorption iIn molecules

Let us consider an external perturbation which is a homogeneous electric field: “®
/
Vo (rw)=—-eEW)- r AVAVAUSIR =S

This external perturbation linearly induces a dipole:

A\

d(w) = Tr [t §'(w)] = (#[(hw — £)71 - [V (@), p"))

ext

We can rewrite the expression above by defining the dynamical polarizability tensor of the dipole:

Polarizability tensor: Liouville-Lanczos (turbo_lanczos.x) or Casida-Davidson (turbo_davidson.x)
32



Polarizability (arb. units)

Absorption spectra of molecules in vacuum (ALDA)

Absorption Iin a caffeine molecule
from Liouville-Lanczos

—— 500 Steps 1000 Steps

2000 Steps

10000 Steps

Energy (eV)

S. Baroni et al., J. Phys.: Condens. Matter 22, 074204 (2010).
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Absorption spectra of molecules in vacuum (ALDA)

Absorption in a caffeine molecule Absorption in anthocyanins

from Liouville-Lanczos from Casida-Davidson
—— 500 Steps 1000 Steps 2000 Steps 10000 Steps (Ell) | pelargonin Pel
‘n
“n =
+= -
— -
> .
' € Cyanin s
‘(% W (b) peonin = Cya
N—" >
> e Peo
i —
= O
e 0
(T N A EP e
N — .
- (O (c) delphinin =——
S O petunin ———
—O— 0 malvin  =——
an

400 500 600 700
Wavelength (nm)

Energy (eV)

S. Baroni et al., J. Phys.: Condens. Matter 22, 074204 (2010). X. Ge et al., Chem. Phys. Lett. 618, 24 (2015).
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Absorption spectra of molecules (with hybrids and solvent)

@wﬁnum 2 ¥

W‘" % N

p
"tr’ﬂ M b

\‘ ',

l* qllll
- b

Replace an explicit solvent (expensive)
by an implicit solvent (inexpensive)

Self

A. A

-consistent continuum solvation model

ndreussi et al., JCP 136, 064102 (2012)

imrov, O. Andreussi, A. Biancardi, N. Marzari, and S. Baroni, J. Chem. Phys. 142, 034111 (2015).
imrov, M. Micciarelli, M. Rosa, A. Calzolari, and S. Baroni, J. Chem. Theor. Comput. 12, 4423 (2016). 34



Absorption spectra of molecules (with hybrids and solvent)

Replace an explicit solvent (expensive)
by an implicit solvent (inexpensive)

Self-consistent continuum solvation model
A. Andreussi et al., JCP 136, 064102 (2012)

— Gaussian, vacuum

- B3LYP | (uwsimbee o1 PBE =» B3LYP: blue-shift of peaks

! A -~ turboTDDFT, water

— Gaussian, vacuum
B Gaussian, water P B E i
== turboTDDFT, vacuum ‘ !
- = turboTDDFT, water y

Solvatochromic effects are observed
(I.e. the dependence of the optical
absorption spectra on the solvation)

Absorption strength (arb. units)
Absorption strength (arb. units)

~~~
——
————
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400 450 500 550 600 650 700 400 450 500 550 600 650 700

imrov, O. Andreussi, A. Biancardi, N. Marzari, and S. Baroni, J. Chem. Phys. 142, 034111 (2015).
imrov, M. Micciarelli, M. Rosa, A. Calzolari, and S. Baroni, J. Chem. Theor. Comput. 12, 4423 (2016). 34



Absorption spectra of solids

Bulk silicon

60 | | | | |
o Exp.
>0 N —-- = RPA
./(N ..\ "', .. ., .\ — e — — AI DA
\ | - : L GW-RPA
. | - \
40 |- NS & ¢ BSE
i . : \
I \—‘/ !
30 - % V! l ‘
= . \ 71L .
_ R
\.7"‘/.
> - ‘. 1:11 ¢
g \ _ . N -
N . - . ~.
o B "N
.... s
| |
4 5
w (eV)

Francesco Sottile, PhD thesis,

=cole Polytechnique (France) 2003.
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Various spectroscopies from TDDFPT

TDDFPT

\

Electron energy loss

spectroscopy
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Electron energy loss in solids

Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

velxt,q(n w) — 6z'q-r

37



Electron energy loss 1n solids

Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

Vept,q(t,w) = €97

The charge-density susceptibility (density-density response function) reads:

N\

Xn(Q,w) = (Ag|(hw — Lq) ™" - [Aig, p])
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Electron energy loss 1n solids

Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

Vept,q(t,w) = €97

The charge-density susceptibility (density-density response function) reads:

N\

Xn(q,w) = <ﬁq‘(hw — Cq)_l ’ [ﬁqaﬁob

This allows us to compute the inverse dielectric function:

B Are?
e ' (q,w) =1+ P Xn(q,w)

37



Electron energy loss 1n solids

Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

c
¥4 __1q-r —» /
Veazt,q(r7w) — €
The charge-density susceptibility (density-density response function) reads:
_ /a 5 \—1 [a A0
Xnlg,w) = (Ng|(hw — Lg)" " - [Ng, 0 ])
This allows us to compute the inverse dielectric function: Double-differential cross section:

d*o

d{)de

o Amre?
€ 1((1,00) — 1 = |q|2 Xn(qvw)

x —Im [6_1 (q7 W)]

iy

Loss function —Im [6_1((17 w)| : Liouville-Lanczos (turbo_eels.x)
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—Im [6—1 (qa w)]

p i,

B

Electron energy loss in solids

EELS spectrum of bulk silicon

» IXS experiment y

— theory (LL approach) "
-~ theory (convent. TDDFT) ,c’ \

Q=0.53au.ll[100] -

plasmon %\
peak N

e 1 | 1 ] 1 ] 1 ] !

5 10 15 20 25 30
o (eV)

|. Timrov, N. Vast, R. Gebauer, and S. Baroni,
Phys. Rev. B 88, 064301 (2013).
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Electron energy loss in solids

EELS spectrum of bulk silicon

25 ' | ' | T | T I T I T

» IXS experiment
> — theory (LL approach) "

— -~ theory (convent. TDDFT) ¢ \
- / 4
S 5 =053 au. 1[100] / %
/I° ‘\
| % \
W 4
— . ] H Y
- %
- \\
| 0.5+ ’ plasmon \
. peak A\
0 " 1 ] L | X | L | :‘-
0 5 10 15 20 25 30
o (eV)

|. Timrov, N. Vast, R. Gebauer, and S. Baroni,
Phys. Rev. B 88, 064301 (2013).

Bulk diamond

livllltlrlttlllllllllltl

— Im[¢ " (Q)]
-~ Re[e (Q.0)]

P — —
~—~
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\\\,\-—./
L1l 1 1 l | I . - | I L1l 1 1 l L1 1 1 l Ll 1 1
15 |- —
[m[e(Q,m)]
10 - A -= Re[e(Qw)]

|. Timrov, N. Vast, R. Gebauer, and S. Baroni,

Comput. Phys. Commun. 196, 460 (2015). 38



Electron energy loss in solids

EELS spectrum of bulk bismuth
20_l |

I T 7 T 1T 7 17T T 1T ™ 1T 7T
- Expt.
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e
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| a
100

|. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017). 39



—Im [6—1 (q7 CU)]

Electron energy loss 1n solids

-LS spectrum of bulk bismuth

T 1T 7

- Expt.
— Theory (LDA)

Peaks dispersion as a function of g
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|. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017). 39



—Im [6—1 (q7 CU)]

Electron energy loss 1n solids

-LS spectrum of bulk bismuth

w (eV)
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TDDFTGOALDA gives good results for EELS in solids (contrary to the optical absorption in solids)!

Limitation: excitons are not captured by ALDA.
|. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017).
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Various spectroscopies from TDDFPT

TDDFPT

Inelastic neutron scattering

spectroscopy
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Inelastic neutron scattering 1n solids

Let us consider an external perturbation which 1s an iIncoming neutron:

Ve'xt’q(r, w) = —up o - B(w) e
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Inelastic neutron scattering 1n solids

Let us consider an external perturbation which 1s an iIncoming neutron:

¥

ea:t,q(r7 w) — —HUBO - B(w) eiqr

The magnetization-density susceptibility (spin-spin response function) reads:

A\

Xom (4 w) = (g|(hw — Lg) ™ - [, p])

41



Inelastic neutron scattering 1n solids

Let us consider an external perturbation which 1s an iIncoming neutron:

~€,$t’q(r’ w) — —UR O - B(w) 67lq.r

The magnetization-density susceptibility (spin-spin response function) reads:

A\

X (G w) = (g |(hw — Cq)_l ‘ [rhq,f)OD

This allows us to compute the following quantity:

S(q,w) = —ImTr [P(q) x(q.w)]

41



Inelastic neutron scattering 1n solids

Let us consider an external perturbation which 1s an iIncoming neutron:

¥4
ext,q

(r,w) = —pp o - B(w) "

The magnetization-density susceptibility (spin-spin response function) reads:

n 1

X (0 w) = (Mg|(hw — Lg) ™ - [g, °])

This allows us to compute the following quantity: Double-differential cross section:

' d? o

dS)de
Currently, the code to compute INS spectra Is being ported to the public version of Quantum ESPRESSO.
41

S(q.w) = —ImTr [P(q) x(q. w)] x 5(q,w)




Inelastic neutron scattering 1n solids

Magnon dispersion in bulk 1ron Magnon dispersion in bulk nickel
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TDDFTOALDA gives excellent results for Fe but overestimates magnon energies by factor of 2 for Ni.

T. Gorni, |. Timrov, and S. Baroni, Eur. Phys. J. B 91, 249 (2018) - Special edition (in honor of Hardy Gross). 42



_Inear response

DD

t owes I1ts popularity to its re
BSE) when used with the adiabatic a

(or TDD

Summary

=P

atively

) is a well-established theory for modelling various spectroscopi

bproximation.

o0 Adiabatic approximation gives satisfactory results for many properties (e.g. plasmons in solids, some-
times also magnons in solids, etc.). But certain properties come out to be unsatisfactory in adiabatic

O

approximation (e.g. no exc
exchange-correlation kerne

he Quantum

of optical absorptio

-SPR

itons). Hence, spatial non-locality and/or frequency-dependence in the
s needed, but the cost of TDDFPT with such kernels increases ve

tic solids, and soon will contain also the code for modelling of magnons in magnetic solids.

ow computational cost (compared to many-body theories as e.g.

cS.

ry rapidly.

=SSO distribution contains a TDDFP T module which can be used for calculations
n spectra of finite systems (molecules), electron energy loss spectra of non-magne-
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