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Time-dependent Schrödinger equation

As in the static case, let us consider the Born-Oppenheimer approximation, which assumes that the 
motion of electrons and nuclei can be separated.

The evolution of a non-relativistic interacting many-electron system is governed by the time-dependent 
Schrödinger equation:

The solution of the time-dependent Schrödinger equation for the many-electron system is even more  
complex than the solution of the static (time-independent) Schrödinger equation!
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From wavefunction to charge density

By analogy to the static case, instead of considering the electronic wavefunction of 3N+1 variables 
one can consider the electronic charge density which is a function of only 4 variables:
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After the great success of static density-functional theory in the description of the many-body systems, 
Runge and Gross extended DFT to the time domain (i.e. TDDFT).

E. Runge and E.K.U Gross, “Density-functional theory for time-dependent systems”,  
Phys. Rev. Lett. 52, 997 (1984).
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From wavefunction to charge density

By analogy to the static case, instead of considering the electronic wavefunction of 3N+1 variables 
one can consider the electronic charge density which is a function of only 4 variables:

After the great success of static density-functional theory in the description of the many-body systems, 
Runge and Gross extended DFT to the time domain (i.e. TDDFT).

E. Runge and E.K.U Gross, “Density-functional theory for time-dependent systems”,  
Phys. Rev. Lett. 52, 997 (1984).

DFT: one-to-one mapping between static charge density and static external potential (minimization 
principle of the total energy).

TDDFT: straightforward extension of this idea to the time-dependent domain is not possible, because  
the total energy is no longer a conserved quantity.
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Runge-Gross Theorem I
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Runge-Gross Theorem I

Therefore, all observables can be regarded as functionals of the time-dependent charge density.

In contrast to static DFT, in TDDFT we need to set an initial condition, since the system follows an  
evolution in time and we need to know the starting point.
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Runge-Gross Theorem I

Therefore, all observables can be regarded as functionals of the time-dependent charge density.

In contrast to static DFT, in TDDFT we need to set an initial condition, since the system follows an  
evolution in time and we need to know the starting point.

In TDDFT the variational principle cannot be formulated in terms of the energy. Alternatively, there 
exists a quantity analogous to the energy - the quantum-mechanical action functional - which is dened  
in Theorem II.
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Runge-Gross Theorem II
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Runge-Gross Theorem II

Theorem II means that it is possible to solve the time-dependent problem by searching for the 
stationary point of the action     .

In contrast to the energy in the static case, the stationary point is not necessarily a minimum.

The value of the action itself does not provide any relevant additional information, since for the  
true density               .

 6



Quantum-mechanical action functional

In TDDFT the action functional     can be decomposed on the components, much in the same way 
as it is done for the energy functional of DFT:
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Quantum-mechanical action functional

In TDDFT the action functional     can be decomposed on the components, much in the same way 
as it is done for the energy functional of DFT:

In order to approximate the unknown action functional     , Gross and Kohn have introduced an 
auxiliary fictitious system of non-interacting particles that satisfy the time-dependent Kohn-Sham 
equations.

E.K.U Gross and W. Kohn, “Local density-functional theory of frequency-dependent linear response”,  
Phys. Rev. Lett. 55, 2850 (1985).
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Time-dependent Kohn-Sham equations

The effective time-dependent Kohn-Sham potential              has such a form that the time-dependent  
charge density of the non-interacting system equals to the time-dependent charge density of the real  
system of interacting electrons.
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Adiabatic approximation

As in the static DFT, the time-dependent Kohn-Sham equations require a suitable approximation for  
the exchange-correlation (xc) potential in order to be applied in practice.

In the time-dependent case, the xc potential is time-dependent and depends on density           at all  
past times, and thus it is absolutely nontrivial and even more dicult than in the static case to find an  
expression for it.
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Adiabatic approximation

As in the static DFT, the time-dependent Kohn-Sham equations require a suitable approximation for  
the exchange-correlation (xc) potential in order to be applied in practice.

In the time-dependent case, the xc potential is time-dependent and depends on density           at all  
past times, and thus it is absolutely nontrivial and even more dicult than in the static case to find an  
expression for it.

The most popular choice is the adiabatic local-density approximation (ALDA) which is obtained by  
evaluating the standard LDA potential with the time-dependent density          :

Limitations of ALDA: optical properties of solids, double excitations, charge-transfer excitations, …
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Linear vs nonlinear response regimes

TDDFT

Linear-response  
regime

External perturbation is weak

Nonlinear-response  
regime

External perturbation is strong

(solve TDDFT equations in 
 the time or frequency domain)

(solve TDDFT equations  
 in the time domain)
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Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential is weak, and that it can be written as:

 12



Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential is weak, and that it can be written as:

Therefore, the density           can be expanded in Taylor series with respect to the perturbation:

 12



Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential is weak, and that it can be written as:

Therefore, the density           can be expanded in Taylor series with respect to the perturbation:

 12



Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential is weak, and that it can be written as:

Therefore, the density           can be expanded in Taylor series with respect to the perturbation:

 12



Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential is weak, and that it can be written as:

Therefore, the density           can be expanded in Taylor series with respect to the perturbation:

 12



Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential is weak, and that it can be written as:

Therefore, the density           can be expanded in Taylor series with respect to the perturbation:

Susceptibility

 12



Linear-response TDDFT (TDDFPT)

Let us assume that the time-dependent external potential is weak, and that it can be written as:

Therefore, the density           can be expanded in Taylor series with respect to the perturbation:

Susceptibility

Time-dependent density functional perturbation theory (TDDFPT) is TDDFT in conjunction with 
perturbation theory. If we keep only the first-order terms in the Taylor expansion, then this is linear- 
response TDDFT.
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Different ways how to compute the susceptibility from TDDFPT
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Dyson 
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Dyson method

Charge-density susceptibility:
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Dyson method

Charge-density susceptibility:

Let us use the chain rule for functional derivatives:
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Dyson method

Charge-density susceptibility:

Let us use the chain rule for functional derivatives:

Exchange-correlation kernel:
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Dyson method
After gathering all terms together, and performing a Fourier transformation to the frequency domain,  
one obtains the final integral equation, which is called the Dyson-like screening equation:

G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).  16



Dyson method
After gathering all terms together, and performing a Fourier transformation to the frequency domain,  
one obtains the final integral equation, which is called the Dyson-like screening equation:

Independent-particle polarizability:

G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).  16



Dyson method
After gathering all terms together, and performing a Fourier transformation to the frequency domain,  
one obtains the final integral equation, which is called the Dyson-like screening equation:

Independent-particle polarizability:

Let us rewrite the Dyson-like equation in the reciprocal space. To this end, let us make use of the Fourier 
transformation from real space to reciprocal space:

G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).  16



Dyson method
The Dyson-like matrix equation in the reciprocal space:

is the Fourier transform of the Coulomb potential

is the Fourier transform of the exchange-correlation kernel
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Dyson method
The Dyson-like matrix equation in the reciprocal space:

is the Fourier transform of the Coulomb potential

is the Fourier transform of the exchange-correlation kernel

🙁 Multiplication and inversion of large matrices

🙁 Sum over numerous empty states n’ in the calculation of 

🙁 The matrices          and          must be computed for every value of frequency
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Different ways how to compute the susceptibility from TDDFPT
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Dyson 
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Sternheimer method
The time-dependent Kohn-Sham equations:

The Kohn-Sham Hamiltonian:
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Sternheimer method
The time-dependent Kohn-Sham equations:

The Kohn-Sham Hamiltonian:
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Sternheimer method
Therefore, we can rewrite the Kohn-Sham Hamiltonian as:
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Therefore, we can rewrite the Kohn-Sham Hamiltonian as:

The time-dependent Kohn-Sham wavefunctions are:
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Sternheimer method
Therefore, we can rewrite the Kohn-Sham Hamiltonian as:

The time-dependent Kohn-Sham wavefunctions are:

This allows us to write the time-dependent linear-response Kohn-Sham equations (Sternheimer eqs.) as:

 20



Sternheimer method
By performing a Fourier transformation from the time domain to the frequency domain we obtain:
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Sternheimer method
By performing a Fourier transformation from the time domain to the frequency domain we obtain:

SELF-CONSISTENT 
PROBLEM

Solved iteratively
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By performing a Fourier transformation from the time domain to the frequency domain we obtain:

SELF-CONSISTENT 
PROBLEM

Solved iteratively

Projector on  
empty states:
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Sternheimer method
By performing a Fourier transformation from the time domain to the frequency domain we obtain:

SELF-CONSISTENT 
PROBLEM

Solved iteratively

Projector on  
empty states:

🙂 No need in empty states (thanks to the projector     )

🙁 The Sternheimer equations must be solved for every value of frequency
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Liouville-Lanczos method
The quantum Liouville equation describes the time evolution of the charge density matrix operator:

B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008).  23



Liouville-Lanczos method
The quantum Liouville equation describes the time evolution of the charge density matrix operator:

In the coordinate representation the charge density matrix reads:

B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008).  23



Liouville-Lanczos method
The quantum Liouville equation describes the time evolution of the charge density matrix operator:

In the coordinate representation the charge density matrix reads:

Using the linear response theory, we can rewrite the quantum Liouville equation to first order as:

B. Walker, A.M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008).  23



Liouville-Lanczos method

Let use rewrite the linear-response quantum Liouville equation by defining the Liouville superoperator:
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Liouville-Lanczos method

How to solve the linear-response quantum Liouville equation in practice? Lanczos recursion  
algorithm

O.B. Malcioglu, R. Gebauer, D. Rocca, and S. Baroni, Comput. Phys. Comun. 182, 1744 (2011).
X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014).  25
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X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014).
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How to solve the linear-response quantum Liouville equation in practice? Lanczos recursion  
algorithm
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Liouville-Lanczos method

Lanczos recursion  
algorithm
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Liouville-Lanczos method

Lanczos recursion  
algorithm

Let us define two two-component Lanczos vectors:
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Liouville-Lanczos method

Lanczos recursion  
algorithm

Let us define two two-component Lanczos vectors: Lanczos recursion chain:
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Liouville-Lanczos method

Lanczos recursion  
algorithm

Let us define two two-component Lanczos vectors:

Tridiagonal matrix:

Lanczos recursion chain:

Susceptibility is computed in a postprocessing step:

🙂 No need in empty states

🙂 The tridiagonal matrix       must be computed 
     only once (independently of frequency)

🙂 The postprocessing is inexpensive; extrapolation 
    of Lanczos coefficients allows to speed up the  
    convergence
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Different ways how to compute the susceptibility from TDDFPT

TDDFPT

Dyson 
method

Sternheimer 
method

Liouville-Lanczos 
method

Casida-Davidson 
method
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Casida-Davidson method
Let us recall the equations from the Sternheimer method:

X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014).  28



Casida-Davidson method
Let us recall the equations from the Sternheimer method:

X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, and S. Baroni, Comput. Phys. Comun. 185, 2080 (2014).

Now let us rewrite these equations in the matrix form (Casida equations), and determine the eigenvalues  
of the matrix on the left-hand side (Liouvillian) using the Davidson-like diagonalization algorithm:

0

0

The eigenvalues of the Liouvillian correspond to the poles of the susceptibility.

🙂 This is the method of choise if one is interested in a few lowest-energy excitations in the system.
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Optical absorption in molecules

Let us consider an external perturbation which is a homogeneous electric field:
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Let us consider an external perturbation which is a homogeneous electric field:

This external perturbation linearly induces a dipole:
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Optical absorption in molecules

Let us consider an external perturbation which is a homogeneous electric field:

This external perturbation linearly induces a dipole:

We can rewrite the expression above by defining the dynamical polarizability tensor of the dipole:
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Optical absorption in molecules

Let us consider an external perturbation which is a homogeneous electric field:

This external perturbation linearly induces a dipole:

We can rewrite the expression above by defining the dynamical polarizability tensor of the dipole:

Polarizability tensor: Liouville-Lanczos (turbo_lanczos.x) or Casida-Davidson (turbo_davidson.x)
 32



Absorption spectra of molecules in vacuum (ALDA)
Absorption in a caffeine molecule  
      from Liouville-Lanczos
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S. Baroni et al., J. Phys.: Condens. Matter 22, 074204 (2010).  33



Absorption spectra of molecules in vacuum (ALDA)
Absorption in a caffeine molecule  
      from Liouville-Lanczos
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S. Baroni et al., J. Phys.: Condens. Matter 22, 074204 (2010).

Absorption in anthocyanins  
    from Casida-Davidson

X. Ge et al., Chem. Phys. Lett. 618, 24 (2015).
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Absorption spectra of molecules (with hybrids and solvent)

I. Timrov, O. Andreussi, A. Biancardi, N. Marzari, and S. Baroni, J. Chem. Phys. 142, 034111 (2015).
I. Timrov, M. Micciarelli, M. Rosa, A. Calzolari, and S. Baroni, J. Chem. Theor. Comput. 12, 4423 (2016).

Replace an explicit solvent (expensive) 
by an implicit solvent (inexpensive)

Self-consistent continuum solvation model  
A. Andreussi et al., JCP 136, 064102 (2012)
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Absorption spectra of molecules (with hybrids and solvent)

I. Timrov, O. Andreussi, A. Biancardi, N. Marzari, and S. Baroni, J. Chem. Phys. 142, 034111 (2015).
I. Timrov, M. Micciarelli, M. Rosa, A. Calzolari, and S. Baroni, J. Chem. Theor. Comput. 12, 4423 (2016).

Replace an explicit solvent (expensive) 
by an implicit solvent (inexpensive)

Self-consistent continuum solvation model  
A. Andreussi et al., JCP 136, 064102 (2012)

PBE B3LYP PBE     B3LYP: blue-shift of peaks

Solvatochromic effects are observed 
(i.e. the dependence of the optical  
 absorption spectra on the solvation)
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Absorption spectra of solids

Bulk silicon

Francesco Sottile, PhD thesis, École Polytechnique (France) 2003.  35
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Electron energy loss in solids
Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):
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The charge-density susceptibility (density-density response function) reads:
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This allows us to compute the inverse dielectric function:
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Electron energy loss in solids
Let us consider an external perturbation which is an incoming electron (i.e. a plane wave):

e-

SA
M

P
LE

The charge-density susceptibility (density-density response function) reads:

This allows us to compute the inverse dielectric function: Double-differential cross section:

Loss function                        : Liouville-Lanczos (turbo_eels.x)
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Electron energy loss in solids

EELS spectrum of bulk silicon 

I. Timrov, N. Vast, R. Gebauer, and S. Baroni,  
      Phys. Rev. B 88, 064301 (2013).

plasmon  
peak
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Electron energy loss in solids

EELS spectrum of bulk silicon 

I. Timrov, N. Vast, R. Gebauer, and S. Baroni,  
      Phys. Rev. B 88, 064301 (2013).

plasmon  
peak

Bulk diamond 

I. Timrov, N. Vast, R. Gebauer, and S. Baroni,  
   Comput. Phys. Commun. 196, 460 (2015).  38



Electron energy loss in solids

I. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017).

EELS spectrum of bulk bismuth 
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Electron energy loss in solids

I. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017).

EELS spectrum of bulk bismuth Peaks dispersion as a function of q

q
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Electron energy loss in solids

I. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, and S. Baroni, and N. Vast, Phys. Rev. B 95, 094301 (2017).

EELS spectrum of bulk bismuth Peaks dispersion as a function of q

q

TDDFT@ALDA gives good results for EELS in solids (contrary to the optical absorption in solids)!
Limitation: excitons are not captured by ALDA.
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Inelastic neutron scattering in solids
Let us consider an external perturbation which is an incoming neutron:
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Inelastic neutron scattering in solids
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The magnetization-density susceptibility (spin-spin response function) reads:
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Inelastic neutron scattering in solids
Let us consider an external perturbation which is an incoming neutron:

n

SA
M

P
LE

The magnetization-density susceptibility (spin-spin response function) reads:

This allows us to compute the following quantity: Double-differential cross section:

Currently, the code to compute INS spectra is being ported to the public version of Quantum ESPRESSO. 
 41



Inelastic neutron scattering in solids

T. Gorni, I. Timrov, and S. Baroni, Eur. Phys. J. B 91, 249 (2018) - Special edition (in honor of Hardy Gross).

Magnon dispersion in bulk iron Magnon dispersion in bulk nickel

TDDFT@ALDA gives excellent results for Fe but overestimates magnon energies by factor of 2 for Ni.
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Summary

Linear response TDDFT (or TDDFPT) is a well-established theory for modelling various spectroscopies.  
   It owes its popularity to its relatively low computational cost (compared to many-body theories as e.g.  
   BSE) when used with the adiabatic approximation.

Adiabatic approximation gives satisfactory results for many properties (e.g. plasmons in solids, some- 
   times also magnons in solids, etc.). But certain properties come out to be unsatisfactory in adiabatic  
   approximation (e.g. no excitons). Hence, spatial non-locality and/or frequency-dependence in the  
   exchange-correlation kernel is needed, but the cost of TDDFPT with such kernels increases very rapidly. 

The Quantum ESPRESSO distribution contains a TDDFPT module which can be used for calculations 
   of optical absorption spectra of finite systems (molecules), electron energy loss spectra of non-magne- 
   tic solids, and soon will contain also the code for modelling of magnons in magnetic solids. 
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