

September 15–20, 2019 Ljubljana, Slovenia

Jožef Stefan

Ljubljana, Slovenija

Institute

Ljubljana, SloveniaSummer School on Advanced Materials and Molecular Modelling

Elevator pitches (part II)

Evidence for a linear coordination of Ag⁺ in water: a X-ray absorption spectroscopy, classical and a*b initio* Molecular Dynamics study

Matteo Busato,^a Andrea Colella,^b Giordano Mancini,^c Matteo Peluso,^c Daniele Veclani,^a

Andrea Melchior,^a Marilena Tolazzi,^a Ingmar Persson,^d Paola D'Angelo^b

^aDPIA, Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy ^bDipartimento di Chimica, Università di Roma "La Sapienza", P.Ie A. Moro 5, 00185 Roma, Italy ^cScuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy ^dDepartment of Molecular Sciences, Swedish University of Agricultural Sciences, P.O.Box 7015, SE-750 07 Uppsala, Sweden

SCUOL

Summer School on Advanced Materials and Molecular Modelling

Ag⁺ coordination number (CN) in water: theoretical works

[1] Armunanto et al. J. Phys. Chem. A 2003, 107, 3132
 [2] Spezia et al. Phys. Rev. Lett. 2003, 91, 1
 [3] Spezia et al. J. Chem. Phys. 2004, 120, 5261
 [4] Vuilleumier et al., J. Chem. Phys. 2001, 115, 3454
 [5] Li et al., J. Chem. Theor. Comput. 2015, 11, 1645

[6] Dubois et al. J. Phys. Chem. B 2001, 105, 9363[7] Leung et al., J. Chem. Phys. 2009, 130, 204507[8] Blauth et al. Chem. Phys. Lett. 2010, 500, 251

Intro

Ag⁺ coordination number (CN) in water: theoretical works

Challenges: • reproducing $CNs \le 4$ within the experimental bond distance

• reproducing asymmetric coordinations (linear)

Intro

X-ray absorption spectroscopy (XAS) EXAFS data analysis

Fitting for fixed CNs between 1.7 and 6.0:

Minimum residue between experimental and fitted spectra for CN = 2.0

Summer School on Advanced Materials and Molecular Modelling

X-ray absorption spectroscopy (XAS) EXAFS data analysis

EXAFS: high-energy part of a XAS spectrum 7

Best-fit results:

Results

Fitting for fixed CNs between 1.7 and 6.0:

1.5e-006 Ag-O (A^{-2}) 1e-006 Ag-H Бsq $\chi(k)k^2$ 2.3.4 5e-007 Total 0.2 Resid 0 5 3 6 CN 8 (Å⁻ 12 6 4 k (Minimum residue between experimental and fitted spectra for CN = 2.0

Summer School on Advanced Materials and Molecular Modelling

X-ray absorption spectroscopy (XAS) XANES data analysis

XANES: low-energy part of a XAS spectrum.

Sensible to 3D displacement around the metal.

Best-fit for linear coordination

Results

CN	r _{Ag-O} (Å)
2.0	2.20

CPMD confirms the linear coordination

Classical MD

Three-site model with virtual sites (VS)

VSs allow the reproduction of the experimental coordination

Results

Evidence for a linear coordination of Ag⁺ in water: a X-ray absorption

Thank you for your attention

Please come and visit

Summer School on Advanced Materials and Molecular Modelling

G

Quantum ESPRESSO

Summer School on Advanced Materials and Molecular Modelling, September 16-20, 2019, Ljubljana, Slovenia

HRTEM AND DFT STUDY OF TRANSLATION STATES IN Sb- DOPED ZnO

Vesna RIBIĆ^a, Aleksander REČNIK^b, Anton KOKALJ^b, Matej KOMELJ^b, Zorica BRANKOVIĆ^a and Goran BRANKOVIĆ^a

^a Institute for Multidisciplinary Research, Belgrade, Serbia ^b Jožef Stefan Institute, Ljubljana, Slovenia

Inversion boundaries in ZnO

- :. Inversion boundaries (IBs) are the most common type of planar faults causing inversion of polarity: head-to-head $(\rightarrow | \leftarrow)$ or tail-to-tail $(\leftarrow | \rightarrow)$
- they are triggered by the addition of specific IB-forming dopants:
 In₂O₃, Fe₂O₃, Mn₂O₃, Ga₂O₃, SiO₂, SnO₂, TiO₂ and Sb₂O₃
- IBs predominatly lie in basal planes (b-IB), but with some dopants they occupy pyramidal planes of ZnO structure (p-IB)

- ∴ Depending on stacking sequence, there exist three possible translations for basal-plane head-to-head (→|←) IBs:
 - 1 Only inversion of ZnO domain from selected (0001) plane. Determined by Hoemke (2017) for Mn-doped ZnO.
 - 2 Stacking fault followed by inversion of translated domain. First reported by Rečnik (2001) for Sb-doped ZnO.
 - 3 Double stacking fault followed by inversion of displaced domain. Reported by Walther (2006) for Fedoped ZnO.

Translations can be followed in the O-sublattice.

 They can be produced from pure wurtzite ZnO or through preceeding SFs, followed by inversion.

Two more translations have been reported in literature ..

... that would produce two further IB models:

DFT of IB-Sb

- .: Quantum-Espresso, PBE approximation, Ultrasoft pseudopotentials
- ... Supercells with 8 atomic layers on both sides of IBs; 216 atoms (6 H atoms)

Results IB-Sb

All calculations converged; structure of ZnO is preserved

Contraction along c-axis in the oxygen sublattice for Model 2								
DFT relaxed	HRTEM, Rečnik et al (2001)							
-0.516 ± 0.001 Å	-0.53 ± 0.05 Å							
$\Delta Ox = 0.0976 \pm 0.0002$	$\Delta Ox = 0.102 \pm 0.01$							
2.604 Å I ≺ → I	2.088 Å \ > \							
()) ()) ()	😔 🚱 🌚 🌚 🌚							
@ > @ > @ @ @ @	@ > @ > @ > @							
@ > @ > @ • @ • @	@ > @ > @ > @ @							

... 3rd translation model turned out to be the most stable one

Experimental proof for the DFT result - translations in Sb-IBs

HRTEM images of IB in Sb⁵⁺-doped ZnO

Sb-I ①

IB

[100]

Experimental confirmation of Model 3!

CONCLUSIONS

- DFT result are in good agreement with experimental ones
- DFT revealed that the third model was most stable for Sb, which was then experimentally confirmed

Ab-initio study of proton transfer reaction between H₃O⁺ ion and volatile organic compounds related to cork-taint in wine

Manjeet Kumar

PhD student Dept. of Physics University of Milan

Volatile organic compounds in wine

- Volatile organic compounds (VOC) are the chemicals that easily become vapors or gases.
- > VOCs are emitted as gases from certain solids or liquids.
- A set of undesirable smells or tastes found in a bottle of wine is referred to a wine fault.
- > VOCs in wine: Chloroanisole, Bromoanisole and Chlorophenols along with many others.
- Detection techniques require to be very fast and detection limit as low as pptv.

Proton-Transfer Reaction Mass Spectrometry (PTR-MS)

Proton transfer reaction in drift tube :

$$H_{3}O^{+} + M = MH^{+} + H_{2}O$$
 $[MH^{+}]_{t}/[H_{3}O^{+}] = I_{MH^{+}}/I_{H3O}^{+} = k[M]t$

K = rate coefficient, t = reaction time

Theoretical models

Ion-molecule collision:

 $\kappa_L = \sqrt{\frac{\pi \alpha q^2}{\mu \epsilon_0}}$

Average dipole orientation:

$$\kappa_{ADO} = \sqrt{\frac{\pi\alpha q^2}{\mu\epsilon_0}} + \frac{C\mu_D q}{\epsilon_0} \sqrt{\frac{1}{2\pi\mu\kappa_B T}}$$

Capture rate coefficient:

$$\kappa_{cap} = \kappa_L \times \kappa_c (\tau, \epsilon)$$

Method and Results :

Dipole moment and polarizability of the molecules are calculated using Quantum ESPRESSO code.

> DFT functional BLYP and Ultrasoft Pseudopotentials.

 [>] Ion-molecule reaction rate coefficients
 (Langevin, Average dipole orientation and parametrized Trajectory method) at
 300 & 380 K between H₃O⁺ and VOC
 under PTR-MS working conditions.

Compound name	μ_D (Debye)	(ų)	Т (К)	K _{Langevin} 10 ⁻⁹ cm ³ s ⁻¹	К _{адо} 10 ⁻⁹ ст ³ s ⁻¹	K _{cap} (com) 10 ⁻⁹ cm ³ s ⁻¹
2,4,6-TCA	1.41	21.47	300 380	2.58	3.09 3.09	2.73 2.71
2,4,6-TBA	1.44	25.67	300 380	2.78	3.26 3.27	2.91 2.89
2,3,4,6-TeCA	1.59	23.58	300 380	2.70	3.27 3.27	2.88 2.86
2,4-DCA	3.45	19.12	300 380	2.46	4.19 4.19	3.84 3.72
2,6-DCA	2.17	18.53	300 380	2.42	3.41 3.41	2.89 2.85
Octen-3-ol	1.57	17.12	300 380	2.37	3.01 3.01	2.61 2.59
Octen-3-one	3.07	16.43	300 380	2.33	3.89 3.89	3.56 3.45
MDMP	1.18	16.88	300 380	2.34	2.70	2.46 2.45
2-MIB	1.47	20.31	300 380	2.54	3.09 3.09	2.71 2.70
Geosmin	1.37	22.02	300 380	2.64	3.14 3.14	2.78
Guaiacol	3.00	14.84	300 380	2.21	3.75	3.45 3.34
PCA	1.38	26.10	300 380	2.82	3.26 3.26	2.94 2.93

 Kinetic energy is a function of E/N for collision between H₃O⁺ and different molecules.

Td = townsend 1 Td = 10^{-17} V. cm².

Rate coefficients vs KE_{com}

Conclusion :

- The rate coefficients predicted using ADO depend uniquely on the dipole moment and Polarizability and independent of temperature.
- Where as rate coefficients by parameterized trajectory method show small variation with temperature.
- Rate coefficients obtained form parameterized trajectory method remain constant with internal temperature (E/N>120 Td).
- > Overall rate coefficient decreases with increasing center-of-mass kinetic energy.

Response of GaN to sequential ion irradiation

J. Hanžek¹, H. Vázquez², F. Djurabekova², M. Karlušić^{1,*}

- 1 Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- 2 Department of Physics, University of Helsinki, P.O. Box 43, 00014, Helsinki, Finland
- * Corresponding author: marko karlusic@irb.hr

Track formation with swift heavy ions

Analytical thermal spike model

Molecular dynamic simulation of GaN

Crystalline GaN. There is no ion track[3]. **Pre-damaged GaN.**

The ion track radius is about 7nm.

Literature

[1] Werner Wesch Elke Wendler; Ion Beam Modification of Solids, Ion-Solid Interaction and Radiation Damage Springer Switzerland 2016

[2] G Szenes; General features of latent track formation in magnetic insulators irradiated with swift heavy ions Physical review. B, Condensed matter 51(13):8026-8029 · May 1995

[3] M Karlušić1, R Kozubek2, H Lebius3, B Ban-d'Etat3, R A Wilhelm4, M Buljan1, Z Siketić1, F Scholz5, T Meisch5, M Jakšić1, S Bernstorff6, M Schleberger2 and B Šantić1; Response of GaN to energetic ion irradiation: conditions for ion track formation J. Phys. D: Appl. Phys. 48 (2015) 325304 (12pp)

DFT study of hydrogen bonding between metal hydroxides and common organic functional groups

Lea Gašparič,^{1,2} Matic Poberžnik,² Anton Kokalj²

¹Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia ²Department of Physical and Organic Chemistry, Jožef Stefan Institute, Ljubljana, Slovenia

1. Our aim

- Investigation of the hydrogen bond (donor and acceptor abilities)
- Can one approximate molecule–surface hydrogen bonding with small clusters?

2. Our approach

DFT based calculations:

Cluster calculations (Gaussian 16)

3. The results

- Hydrogen bonds (X···H–Y; X, Y = N, O, S) and adsorption energies
- Donor and acceptor H-bonding strength of common organic functional groups with metal hydroxides

4. What have we learned?

- Small clusters usually give reasonable H-bond energy
- **BUT**: molecules can form several H-bonds with the surface therefore small clusters cannot account for the correct adsorption geometry and the number of hydrogen bonds

Additional information and questions

For any questions or more detailed discussion you can find me next to my poster.

Ab-initio Study of Lattice Anhamonicities in Bulk Lonsdaleite: Hexagonal Diamond

Rekha Verma Indian Institute of Information Technology Allahabad India Poster No. 12

Summer School on Advanced Materials and Modelling, September 16-20, 2019, Ljubljana

Motivation : Exploration of materials for Energy Harvesting Application using Thermoelectricity.

Thermoelectricity :

Conversion of thermal energy (waste heat) into electrical energy using Seebeck effect.

Seebeck Effect : Voltage is induced due to temperature gradient between the two ends of a TE material.

What makes a material to be potential candidate for thermoelectric application?

Thermoelectric (TE) Figure of Merit

1400 10000 Conductivity Power Factor Electrical Conductivity (Ω cm) 6000 4000 2000 $\sigma = 1/\rho$ 1200 Seebeck Coefficient (µV/K) $\alpha^2/\rho = \alpha^2 \sigma$ 1000 Seebeck 800 600 Heavily Doped Metal 400 Semiconductor Semiconductor 200 0 17 18 1920 21 22 Log (Carrier Concentration)

Source: Jeff. Snyder, Northwestern University, USA.

 σ : Temperature dependent electrical conductivity

 $\kappa_{\rm e}$: Electronic thermal conductivity

 κ_{ph} : Phonon thermal conductivity

S_B : Seebeck coefficient

Tune the denominator i.e. the lattice thermal conductivity

How do we do that???

We calculate the thermoelectric transport coefficients i.e., electrical conductivity (σ), Seebeck coefficient (S), Thermal conductivity (κ) by solving Boltzmann transport equation.

Materials under consideration :

Rekha Verma Poster No. 12

What does the DFT has to do with the polymer reinforcement? i.e. Why am I at DFT school talking about PMMA?

www.suabhenerac.ua

COMPUTATIONAL STUDY OF VIBRATIONAL PROPERTIES OF CHEMICALLY EXFOLIATED TITANIUM CARBIDE MXenes - Ti₃C₂ AND TiC₂

Jelena Pešić, Andrijana Šolajić

Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Synthesis

Optical spectroscopy vs DFT

Optical spectroscopy vs DFT

Raman spectra of PMMA/MXene (25%) composite

Optical spectroscopy vs DFT

a) Infrared spectra of MXene flakes (green) and composites PMMA/MXene b) circles represent experimental data and solid lines are fit obtained by Maxwell-Garnet model

PMMA/Mxene 5%

Optical modification!!!

PMMA/Mxene 25%

Optical spectroscopy WITH DFT

Evaluation of elastic characteristics of self-point defects and impurities in beryllium

Thomas Le Crane

IAM, Karlsruhe Institute of Technology, Germany

INSTITUTE OF APPLIED MATERIALS (IAM-AWP), Atomistic Modeling and Validation Group, Department of Metallic Alloys

Purpose

Motivation

Observations in beryllium parts for fusion :

→ Swelling

\rightarrow Tritium retention

Defects affect the atomic environment \rightarrow Strain & stress

How do defects move ? <

Elastic dipole tensor

4 Introduction \rightarrow Lattice parameters \rightarrow Elastic moduli \rightarrow Stable \rightarrow Conclusion

Computation

Objective : elastic dipole tensor for point-defects in stable positions.

$$P_{ij} = -\frac{\partial Ef}{\partial \varepsilon_{ij}}$$

Elastic dipole tensor at stable positions

- Calculations

Self-interstitial

Strain	Formation energy	Defective bulk	Perfect bulk	Potentials
-0,003	4,397407	-476,557	-477,226	-3,7284
-0,002	4,380637	-476,579	-477,231	-3,7284
-0,001	4,363797	-476,598	-477,234	-3,7284
0	4,346887	-476,616	-477,235	-3,7284
0,001	4,329877	-476,632	-477,234	-3,7284
0,002	4,312837	-476,646	-477,231	-3,7284
0,003	4,295707	-476,658	-477,225	-3,7284

Self-interstitial formation energy as a function of strain 11

Thank you and now, more on the poster !

BIS(AMINO ACID) FUMARAMIDES AS SMALL MOLECULAR WEIGHT GELATORS: X-RAY DIFFRACTION AND CALCULATION of NMR PROPERTIES

<u>Berislav Perić</u>^a, Tomislav Gregorić^b and Leo Frkanec^b

^a Laboratory for Solid State and Complex Compounds Chemistry and
 ^b Laboratory of Supramolecular Chemistry,
 Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia

Bis(amino acid)oxalamide gelators

J. Makarević, M. Jokić, B. Perić, V. Tomišić, B. Kojić-Prodić, and M. Žinić, *Chem. Eur. J.*, **7**, (2001), 3328-3341. B. Kojić-Prodić, B. Perić, Z. Štefanić, A. Meden, J. Makarević, M. Jokić and M. Žinić, *Acta Cryst.* **B60**, (2004), 60, 90.

Proposed scheme for "NMR-crystallography" structural analysis of small molecular gelators

Nonappa and E. Kolehmainen, *Soft Matter*, **12**, (2016), 6015-6026.

BIS(AMINO ACID) FUMARAMIDES

1

2

Solvent	Fum-diLeu- OH	Fum- diLeu- OMe	Fum-diLeu- NH2	Fum- diLeu- OVinvl	Fum-diVal- OH	Fum- diVal- OMe	Fum- diVal-NH ₂	Fum- diVal- OVinvl
H ₂ O	cryst	cryst	cryst	ns	0.4	ns	ns	ns
H ₂ O/DMSO	0.9+0.37	cryst.	3.65+1.1	ng	0.2+0.03	cryst.	0+1.1	6.2+s5.3
H ₂ O/DMF	0.45+0.25	cryst.	$1.8 \pm 1.1^{++}$	0.44+0.48	ng. ⁺	cryst.	0+8.0	cryst.
EtOH	0.2+0.01*	sol.	cryst.	sol.	sol.	cryst.	ns	cryst.
±2-octanol	sol.	sol.	ns.	sol.	sol.	sol.	ns	cryst.
THF	0.1+0.01*	sol.	ng* ⁺⁺	0.26	sol.	cryst.	ns	sol.
dioxane	2.3+0.08*	sol.	0.05+0.05*	sol.	sol.	cryst.	ns	sol.
acetone	0.3+0.01*	cryst.	ns.	0.1+1.3UZ	sol.	cryst.	ns	cryst.
EtOAc	1.4+0.09*	cryst.	ns.	0.2+1.2UZ	2.2+2.0**	sol.	ns	cryst.
CH_2Cl_2	1.0+0.02*	sol.	ng*+	ng+	9.0+0.05*	ng. ** ⁺⁺⁺	ns	sol.
CH ₃ CN	0.25+0.01*	cryst.	ns.	cryst.	sol.	ng. ⁺⁺	ns	cryst.
toluene	2.75+0.01*	cryst	ng* ⁺⁺	0.2	sol.*	1.8	ns	1.6

sol.= soluble, cryst. = crystal, ng= not gel, ns=not soluble; UZ= ultrasonication, *=DMSO; **=hexane; +=gel in solvent;++=gel and fibrous aggregates;+++= fibrous aggregates

Numbers represent maximal volume of solvent (mL) immobilized by 10 mg of gelator.

BIS(AMINO ACID) FUMARAMIDES

(one disorder component, 0.7 occupancy)

Thanks:

Leo Frkanec

Tomislav Gregorić

Zoran Štefanić (X-ray data)

HrZZ, project number 2018-01-6910 - SUPeRNANO

Non-oxidative catalytic dehydrogenation of propane and butane over Cr₂O₃: a DFT study

Matej Huš, Drejc Kopač, Blaž Likozar

Department of Catalysis and Chemical Reaction Engineering Kemijski inštitut

Ljubljana, 18. 9. 2019

Motivation

- Demand for alkenes, such as propylene or butadiene, is rising.
- Traditional methods are insufficient:
 - steam cracking
 - fluid catalytic cracking
- Thus, catalytic dehydrogenation is becoming more and more important:
 - $C_3H_8 \rightarrow C_3H_6 + H_2$
 - $C_4H_{10} \rightarrow C_4H_6 + 2H_2$
- Two industrial processes:
 - Pt/Sn catalysts
 - CrO_x catalysts

Catalyst model

- Plane-wave DFT+U, electron-ion interaction: Projected augmented wave (PAW).
- Perdew-Wang 91 exchange correlation.
- Strong correlation: Hubbard U parameter for Cr, determined from literature.
- Energy cutoff: 500 eV, gamma calculations (large supercell).
- The van der Waals correction: Grimme D3; standard dipole corrections.

- A slab of Cr₂O₃ (0001)
 6 layers Cr and 6 layers of O
- Cr-terminated surface

Reaction mechanism - propane

Species	E _{ads}		
Propane	-0.27 eV		
Prop-1-ene	-0.35 eV		
Prop-1-yne	-0.51 eV		

Reaction mechanism - butane

Species	E _{ads}
Butane	-0.28 eV
But-1-ene	-0.39 eV
But-2-ene	-0.40 eV
But-1-yne	-0.51 eV
But-2-yne	-0.50 eV
Butadiene	-0.45 eV
Butadiyne	-0.30 eV
Butynene	-0.35 eV

Summer School on Advanced Materials and Molecular Modelling

Lateral interactions between electronegative adatoms on metallic surfaces: a highthroughput computational study

Matic Poberžnik and Anton Kokalj

Department of Physical and Organic Chemistry, Jožef Stefan Institute, Ljubljana

Typical behaviour

Typical behaviour

Repulsive dipole-dipole interactions between adatom-image charge pairs expected!

 $E_{\rm rep} \approx \frac{\mu^2}{R^3} \sum \propto \mu^2 \Theta^{\frac{3}{2}} \sum$

lattice

IMAGE CHARGE

Adatom becomes negatively charged!

Typical behaviour

•••

Atypical behaviour: O@Al(111)

Atypical behaviour: O@Al(111)

DOS @ Fermi energy

States near the Fermi energy "vanish" with increasing coverage, indicating ionic bonding!

lonic model

$$E = \mathcal{N} \sum_{i \neq j}^{\infty} \frac{q_i q_j}{|\mathbf{R}_i - \mathbf{R}_j|}$$

Ofcc @ AI(111)

ionic model

....

Nothing specific about Al and O

- ionic bonding
- atom close to the surface
 - (large lattice parameter, below critical height)

Nothing specific about Al and O

- Ionic (localized) bonding
- atom close to the surface

Other adsorbates and metals?

Adsorbates & Metals

Results

SIMULATING NV CENTERS

CHIVES

CODE FOR HIGHLY EXCITED VALENCE ELECTRON SYSTEMS

Н																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr									Ag	Cd	In	Sn	Sb	Te		Xe

CODE FOR HIGHLY EXCITED VALENCE ELECTRON SYSTEMS

"...cloud of soot could reduce temperatures by 5-10°C"

Paul Crutzen in Nature, on Kuwait's oil wells fires in 1991

September 15–20, 2019 Ljubljana, Slovenia

Jožef Stefan

Ljubljana, Slovenija

Institute

Summer School on Advanced Materials and Molecular Modelling

LET'S CONTINUE IN THE LOBBY DOWNSTAIRS.

